
Recognition of User-Defined Video Object Models
using Weighted Graph Homomorphisms

Dirk Farina, Peter H.N. de Withb, Wolfgang Effelsberga

aDept. of Computer Science IV, University of Mannheim, Germany
bCMG / Eindhoven University of Technology, The Netherlands

ABSTRACT

In this paper, we propose a new system for video object detection based on user-defined models. Object models
are described by “model graphs” in which nodes represent image regions and edges denote spatial proximity.
Each node is attributed with color and shape information about the corresponding image region. Model graphs
are specified manually based on a sample image of the object. Object recognition starts with automatic color
segmentation of the input image. For each region, the same features are extracted as specified in the model graph.
Recognition is based on finding a subgraph in the image graph that matches the model graph. Evidently, it is
not possible to find an isomorph subgraph, since node and edge attributes will not match exactly. Furthermore,
the automatic segmentation step leads to an oversegmented image. For this reason, we employ inexact graph
matching, where several nodes of the image graph may be mapped onto a single node in the model graph.

We have applied our object recognition algorithm to cartoon sequences. This class of sequences is difficult
to handle with current automatic segmentation algorithms because the motion estimation has difficulties arising
from large homogeneous regions and because the object appearance is typically highly variable. Experiments show
that our algorithm can robustly detect the specified objects and also accurately locates the object boundary.

Keywords: Object recognition, inexact graph matching, image segmentation, dynamic programming.

1. INTRODUCTION AND RELATED WORK

The automatic recognition of user-defined objects has evolved as an important application of image analysis.
For example, in object-based video coding applications (e.g. MPEG-4 encoding), user-supplied object models
can give hints to the segmentation algorithm about the set of objects to be separated from the background.
The user-supplied object model is required to achieve a semantically meaningful segmentation. Other possible
applications include queries for video-databases or the derivation of statistics about the occurrence of specific
objects over time.

Recently, region-based algorithms for video database access have become popular.1–3 They are based on
finding characteristic regions in a query image. Subsequently, these regions are used to form a database query
for images that contain similar regions. However, since the relevant regions are extracted automatically, no pre-
knowledge about the spatial object structure is available. Consequently, the object structure is often neglected.

Graph matching is a well-known technique in computer vision and several efficient heuristics have been
developed for the graph isomorphism problem. These include algorithms based on nonlinear optimization,4

quadratic programming,5, 6 relaxation labeling,7 or algorithms that are specialized for a specific class of graphs.8

A completely different approach to region correspondence uses the Earth Movers Distance (EMD), which is a
popular distance measure in the field of image retrieval.9

2. PRINCIPLE OF REGION-BASED GRAPH MATCHING

Our approach for object detection is based on the assumption that objects can be described reliably by a set of
attributed regions and their spatial relationship. The model structure and features are expressed by an object
model graph GM = (VM , EM), where each node in VM represents an image region with uniform color. Nodes
have attributes describing region color, shape, and size. Edges in the model graph define spatial proximity. I.e.,
if (v1, v2) ∈ EM , region v1 must be near region v2. The model graph representation allows to recognize objects
independent of their exact spatial layout as long as the characteristic spatial structure of the objects remains.
In particular, articulated object motion can be modelled in a straightforward way.

Model graphs are defined manually by the user in a graphical editor. To ease the definition, a sample image
of the object can be segmented semi-automatically. Subsequently, the features are extracted automatically from
the sample image. Finally, the spatial structure of the object is defined by connecting neighboring regions.

Object recognition starts with an automatic color segmentation of the input image. For each of the regions
obtained from this segmentation, the same features are extracted as for the model graph. A fully connected
input graph is defined, taking the regions as nodes again and attributing the edges with the region distances.
Since the regions are generated by an automatic segmentation process covering the whole image, this input graph
will be much larger than the model graph. Furthermore, due to oversegmentation, regions that belong together
semantically may be split into separate regions.

Recognition is based on the idea to find a subgraph in the input graph that matches our model graph.
Obviously, it is not possible to find an isomorph subgraph since node and edge attributes will not match exactly
and model-graph regions are possibly split into oversegmented regions. Hence, we apply an inexact graph
matching where several nodes of the image graph can be mapped onto a single node in the model graph (1 : N -
matching). The quality of a match is described by judging the compatibility of the node and edge attributes.

In order to reduce the high computational complexity of graph matching, we employ a fast three-step matching
algorithm. The first step reduces the search space by eliminating nodes in the input graph that are very unlikely
to occur in the match. The second step performs a 1 : 1-matching of the skeleton tree of the model graph. The
skeleton tree is a sub-graph T = (VM , ES) (with ES ⊆ EM) of the model graph that only contains a subset of
the edges such that it forms a tree. This 1 : 1-matching of the skeleton tree can be carried out very efficiently
using a dynamic programming approach. The third matching step considers the whole model graph and extends
the matching to a 1 : N -matching.

The paper is organized as follows: Section 3 describes the model editor used to generate the model graphs.
The algorithm used for automatic segmentation is outlined in Section 4. Section 5 presents the features used
to compare region compatibility and, accordingly, graph similarity. Section 6 delineates the three steps of our
matching algorithm. Finally, Section 7 presents results and conclusions are drawn in Section 8.

3. MODEL EDITOR

This section presents an editor for generating model graphs. The object models which are used during the object
detection process, are defined manually by the user in a graphical editor. Manual user interaction is required,
because only the user knows exactly the semantic meaning of the object model and thus only he can specify the
characteristic attributes of a particular object. Since the model specification is an easy task and the models can
be saved into a database of frequently used models, the required time for user interaction is low.

Segmentation of the object regions is based on a marker-driven watershed algorithm, which is applied on the
gradients of a sample image. The difference to the standard watershed algorithm is that the water does not
start flooding from the various local minima. Instead, the water commences to flow from the markers. Several

(a) standard watershed

M M M M1 2a 2b 3

(b) marker driven watershed

Figure 1. Marker-driven manual watershed algorithm. Whereas in the standard algorithm each local minimum creates
a new segment (a), the marker-driven watershed algorithm only builds watersheds between markers (b). Note that the
markers M2a and M2b are assigned to the same region, so that no watershed is built between them.

markers can be grouped together such that water basins of these markers are attributed to the same region (i.e.,
no watershed is built between markers for the same region, see Figure 1).

Relevant object regions are defined manually by placing markers in a sample image. The exact region
boundaries are subsequently located by the watershed algorithm. Errors in the segmentation can be corrected by
joining regions that have been separated by the watershed algorithm. Internally, this is realized by considering
the markers of both regions equivalent (compare the markers M2a,M2b in Figure 1b). The region attributes are
extracted from the sample image (cf., Figure 2d), but can be modified by the user in case the sample image does
not contain a typical view of the object.

Finally, graph edges are added between the regions that must be close to each other independent of a specific
object view. For example, the hand of a human should only be specified as close to the arm, even though it may
also be close to the head in a specific sample image.

As we will see later when considering the matching algorithm, matching becomes particularly efficient when
the model graph has a tree topology. Therefore, we classify the model graph edges into two classes: skeleton tree

edges, and refinement edges. The principal 1 : 1-matching step only uses the skeleton tree edges. This forms no
severe restriction, since most natural objects can be described sufficiently using trees. The refinement edges are
used in the 1 : N -matching step when oversegmented regions are combined to cover the whole object.

(a) input image (b) manual segmen-
tation

(c) model graph (d) blobbed model
graph showing re-
gion features

Figure 2. The creation process of a model graph. Based on the sample input image (a), the user places markers into the
image to separate the regions (b). Edges are introduced (c), where model skeleton tree edges are depicted with strong
red lines, and the fine green lines denote the refinement edges used in the 1 : N matching step. The region features can
be visualized in an abstract presentation (d).

4. AUTOMATIC SEGMENTATION

Automatic segmentation is carried out using a combination of Watershed segmentation and region merging.
The Watershed algorithm provides a very fast pre-segmentation that is strongly oversegmented and thus not
sufficient for our purpose. Hence, a region-merging algorithm further combines neighboring regions obtained
from the Watershed algorithm. Although the Watershed pre-segmentation is not required, it considerably speeds
up the segmentation process, because the region-merging algorithm can start with larger initial regions.

Region merging has proven to be a powerful segmentation algorithm, enabling the use of various merging
criteria to control the merging process. We have chosen the Ward criterion, which results in a segmentation in
which the region variance is minimized. The fundamental idea is to consider every neighboring pair of regions
and calculate the increase of variance that a possible merge of the two regions would impose. Let σ2

i denote the
variance of region ri, µi the region mean brightness, and |ri| the region size. Then, the variance increase when

regions ri and rj are merged, can be calculated by the new variance σ
2
ij minus the original individual variances,

which gives

∆ij = σ2
ij − σ2

i − σ2
j =

|ri| · |rj |

|ri|+ |rj |

(
µi − µj

)2
. (1)

The region-merging algorithm now successively combines the two regions ra, rb for which ∆ab is minimal until
the minimum ∆ab exceeds a threshold. We denote the final set of regions as R = {ri}. For a complete description
of the region merging algorithm used see10 and.11

5. FEATURE EXTRACTION AND MATCHING CRITERIA

To evaluate the similarity of image regions, a set of features is extracted for each region during model creation,
as well as for each region generated by the automatic segmentation process. Based on these features, node and
edge cost functions are defined which serve as matching criteria in the graph matching step. The calculation of
features that are not required for candidate selection (see below) can be postponed after the candidate selection
step. Since only a smaller subset of the regions is actually used in the matching process, the computation time
is reduced.

5.1. Color

The color of each region is described by its coefficients in the Hue, Value, Saturation (HVS) color space. This
color space allows an easy definition of a distance metric having a close relationship with the human perception.
HVS space can be visualized as a cone with black at the tip and the rainbow colors around the base. After
transforming the HVS color (h, v, s) with h ∈ [0; 2π], v, s ∈ [0; 1] into cartesian coordinates using x = v · s · cosh,
y = v · s · sinh, z = v, we use the Euclidean distance between the two colors as color matching cost. We denote
the matching cost for assigning region ri ∈ R to model node mi ∈ VM as CC

mi
(ri).

5.2. Size

The shape feature is simply the size of a region in pixels. During the matching process, two cost measures are
used for region sizes: one based on the absolute region size and one based on relative region sizes. The absolute
region size measure is applied during the candidate selection step to sort out regions that are much larger than
the object model. The absolute size feature is computed as the ratio of the input region size |ri| with respect to
the model region size |mi|: f

S
mi
(ri) = |ri|/|mi|.

1 2 51/21/5

cost
1

0

|r2| |m1|

|r1| |m2|

Figure 3. Relative size cost CRelS
mi,mj

(ri, rj) for matching
a pair of connected model nodes to a pair of input regions.

Since the size of the object in the image may vary,
we do not compare the absolute region sizes to the model
in the actual matching step. In fact, only the relative
sizes of connected regions are compared to the model. For
the computation of the relative size measure, let |ri|, |rj |
be the sizes of two connected regions and |mi|, |mj | the
sizes of the corresponding model regions. We define the
matching cost CRelS

mi,mj
(ri, rj) by the piecewise linear func-

tion depicted in Figure 3. This measure does not penalize
variations of region sizes up to a factor of two. This is
to be robust for varying region sizes because of many fac-
tors like occlusions, differing viewing position, deformable
objects, or inaccurate segmentation.

5.3. Distance

Connected model regions are assumed to have zero distance. However, the distance between a pair of input
regions ri, rj is measured as the minimum pixel distance d(ri, rj) between both region borders. The region
distance cost is defined as

CD(ri, rj) =

{

0 for d(ri, rj) < dmin,
d(ri,rj)−dmin

dmax−dmin
else.

(2)

Truncating the error for small distances has been introduced to tolerate small region distances between input
regions. These small distances can be caused by an inaccurate segmentation. We have chosen dmin = 5 and
dmax = 30 pixels in our experiments, in which the image size was 720× 576 pixels.

5.4. Shape

Automatic segmentation usually generates some regions having a “fuzzy” shape, being thin and having many
concavities. These regions almost never belong to any object, but rather appear in background regions between
objects. Since the regions are often located near object boundaries, they are close to all regions in the object
and thus, for the matching algorithm, they seem to be part of the object. Hence, it is preferable to early identify
these regions and exclude them from the matching.

To find such “misleading” regions, we make use of a shape feature that describes the compactness of a region.

It is computed as fSh(ri) = 4π
|ri|

border(ri)2
, where border(ri) is the length of the region border. Clearly, the shape

feature is maximal (fSh = 1) when the region boundary is a circle and approaches zero when the region is long
and thin. Note that fSh is invariant to scaling.

5.5. Orientation

Edge orientation is an optional matching criterion and can be activated manually for each edge selectively. When
matching symmetric objects, the orientation of the matched graph is ambiguous. To break this symmetry, edges
can be declared as oriented edges. These edges remember which of the two regions is left of the other (or on
top of the other). The relative orientation of two regions is determined by comparing the coordinates of their
centers of gravity. If the model edge e = (mi,mj) is an oriented edge and the orientation of the assigned input
regions ri, rj differs, additional costs are set to C

O
mi,mj

(ri, rj) = 1; otherwise we set C
O = 0.

5.6. Node and Edge Costs

The above-mentioned costs are combined into node cost and edge cost functions, which are computed by

CN
mi
(ri) = αCC

mi
(ri), (3)

for the node cost and

CE
mi,mj

(ri, rj) = βCD(ri, rj) + γCRelS
mi,mj

(ri, rj) + θCO
mi,mj

(ri, rj) (4)

for the edge cost, respectively, where the parameters α, β, γ, θ are weighting factors which we have set to 1.
They can be increased or decreased depending on the application. When it is a-priori known, for example, that
the color may vary because of differing lighting conditions, the weight of the color cost α should be decreased.

For the 1 : N -matching, we have to generalize the cost measures to handle mappings from several input
regions to a single model region. The measures are defined such that the cost measures for 1 : 1 matching result
as a special case. We define the 1 : N matching cost for model nodes with qi ⊂ R as

ĈN
mi
(qi) =

1
∑

r∈qi
|r|

∑

r∈qi

|r| · CC
mi
(r). (5)

The generalized distance measure computes as (see Fig. 4)

ĈD(qi, qj) = min
ra∈qi,rb∈qj

CD(ra, rb)

︸ ︷︷ ︸

minimum distance be-

tween both sets of regions

+
1

2

∑

ra∈qi

min
rb∈qi,rb 6=ra

CD(ra, rb)

︸ ︷︷ ︸

coherence of region qi

+
1

2

∑

rb∈qj

min
ra∈qj ,ra 6=rb

CD(ra, rb)

︸ ︷︷ ︸

coherence of region qj

. (6)

The generalized cost functions for relative region size and orientation ĈRelS and ĈO are computed by determining
the sum of region sizes and the center of gravity for the set of regions. The generalized total edge cost ĈE is
defined as the weighted sum of the individual costs similar to the definition of CE .

distance between
two sets of regions

distances used for region
coherency computation

q
i

q
j

Figure 4. Visualization of computing the distance cost between two sets of regions. The cost is defined as the minimum
distance cost of all regions pairs (ra ∈ qi, rb ∈ qj) plus the minimum distance costs between the regions in each set.

6. MATCHING ALGORITHM

Graph matching is carried out in a three-step process. Since the color or size of many of the regions generated
by the automatic segmentation will strongly deviate from the model regions, they can be excluded from the
matching process to decrease the computational time. The first matching step determines for each model region
a subset of input regions and performs the previously mentioned exclusion of unsuitable regions. The second
matching step involves only the regions of the selected subset as candidates for a model node. The second
matching step computes a 1 : 1 matching of the model graph skeleton tree using a dynamic programming
approach. This 1 : 1 matching acts also as the initialization for the third matching step, where the 1 : 1 matching
is enriched to form a 1 : N matching. Enriching means that additional input regions can be assigned to a single
model region to decrease overall cost. The three matching steps can also be viewed as incrementally imposing
additional structural information. While the first step (candidate selection) is completely free from any structural
constraints, the 1 : 1-matching obeys the structure of the model skeleton tree, and the final 1 : N -matching step
considers the full model graph structure.

6.1. Candidate Selection

The candidate input regions for a model region are selected based on the color, the region size and the shape
feature. The idea of the candidate selection step is to sort out regions that have the wrong color, a clearly
wrong size, or a non-compact shape. Two selection strategies are possible: we can fix the number of candidates
NC for each model region and select the NC best input regions as candidates, or we can set a threshold on
the region similarity and consider all input regions with higher similarity as candidates. The choice of selection
strategy is not critical when the number of candidates are sufficiently high and the thresholds are set high
enough to ensure that the correct matches are not sorted out. We adopted a strategy with fixed number of
candidates for each model region and observed that about 10−20 candidates for each model region are sufficient.
Formally, we define the candidate selection process as the mapping c : VM × {1, 2, . . . , |R|} → R such that
CC

v (c(v, i)) < CC
v (c(v, j))→ i < j if the region c(v, i) fulfills CS

v (c(v, i)) < θ and fSh(c(v, i)) < ν. Otherwise, the
region is placed at the end of the mapping c. Hence, c sorts the input regions according to increasing matching
costs. Input regions that are a factor θ larger than the corresponding model region or that have a non-compact
shape are sorted out by placing them at the end. In our experiments, we have chosen θ = 3 and ν = 0.15. These
values can be adjusted or even selected individually for each model region, depending on the amount this region
can change its size in different input images and on the application or model. Since θ and ν are only used to
sort out clearly non-matching regions, they can be set arbitrarily large or can even be omitted at all (but more
candidates would have to be considered in this case). Since the automatically segmented regions are possibly
only part of a single model graph region and the total size of the object to be found in the input image is not
known yet, regions that are too small should not be excluded. Note that the same input region can appear as
candidate region for several model regions. The constraint that the same input region must not be assigned
twice to different model nodes must be obeyed by the following step.

6.2. 1 : 1-Matching

The 1 : 1-matching step is the most important step, since it does the main localization of the model regions.
The found matches are the seed for the 1 : N -matching step, where they are further extended with additional
input regions.

Weighted graph matching can be described as finding the maximum weight clique in the corresponding
association graph,12 which is known to be NP-hard. However, for special classes of graphs, such as e.g. trees,
efficient algorithms exist. Since almost all real-world objects can be accurately described by trees and the
existence of efficient algorithms for trees, we restrict our 1 : 1-matching step to finding the best matching tree
for the skeleton tree of a model graph.

Our algorithm is based on a dynamic programming approach. The objective is to find the mapping M1:1 :
VM → {1, 2, . . . , |NC |} that minimizes the sum of node costs and edge costs in the tree:

min
M1:1

{
∑

v∈VM

CN
v

(
c(v,M1:1(v))

)
+

∑

(v1,v2)∈ES

CE
v1,v2

(
c(v1,M1:1(v1)) , c(v2,M1:1(v2))

)
}

. (7)

Let us introduce the concept of computing the minimum cost mapping with a simple example. Assume
that the model tree is e.g. a simple linear chain (Fig. 5a). We construct a computation graph by dupli-
cating each model node to NC nodes, each representing the decision that the model region is mapped to a
specific candidate node. The node costs CN are assigned to the nodes, i.e., the first column of nodes get costs
CN

a (c(a, 1)), CN
a (c(a, 2)), . . . , CN

a (c(a,NC)). Similarly, the edge costs C
E are assigned to the edges. Now

minimizing the sum (7) is equivalent to computing the minimum cost path through the resulting computation
graph. To compute the minimum cost path, we proceed column by column from left to right and calculate for
each node the predecessor node that gives the minimum total cost so far. More specifically, we assign attributes
mincost and last to each node in the computation graph. The nodes in the left column are initialized with
mincost equal to their respective node costs CN and last = nil. Continuing with the next column to the right,
we calculate for each node the total cost that results from each choice for the predecessor candidate. This cost
consists of the mincost of the predecessor node, the edge cost CE linking the predecessor node to the current and
the current node cost CN . The predecessor node that gave the least cost is stored into last and the corresponding
minimum cost in mincost. When we arrive at the rightmost column, the candidate with the minimum cost is
selected and the minimum cost path is traced back using the last attributes.

If the model tree contains junctions like shown in Figure 5b, the algorithm above has to be extended. Since
model node c has multiple incoming edges, the best predecessor candidate has to be selected from both, model

a b c d

ca
nd

id
at

es

model

computation graph

(a) model graph is a chain

b
c d

a

e f

model

computation graph

(b) model graph with a single join

Figure 5. Object model skeleton trees with their respective computation graphs.

Algorithm 1 Initialize the computation graph for subsequent dynamic programming algorithm.

Require: the model tree VM = {v1, . . . , vN}, ES ⊂ VM × VM

1: pred(v1 ∈ VM)← ∅
2: l← {v1}
3: r ← VM \ {v1}
4: while l 6= ∅ do

5: select an arbitrary v ∈ l and set l← l \ {v}
6: for all (v, w) ∈ ES ∧ w ∈ r do

7: pred(v)← pred(v) ∪ {w}
8: l← l ∪ {w}
9: end for

10: end while

Algorithm 2 Computing the minimum cost assignment.

1: procedure calccolumn(v ∈ VM)
2: for all w ∈ pred(v) do

3: call calccolumn(w)
4: end for

5: for n = 1 to NC do

6: if pred(v) = ∅ then

7: mincost(v, n)← CN
v (v, c(v, n))

8: else

9: cost← CN
v (v, c(v, n))

10: for w ∈ pred(v) do

11: cost← cost+mini

(
mincost(w, i) + CE

w,v(c(w, i), c(v, n))
)

12: last(v, n, w) is set to the i that minimized the above sum
13: end for

14: mincost(v, n)← cost
15: end if

16: end for

node b and model node f . Consequently, mincost is now obtained by minimizing over the sum of all previous
nodes and incoming edge costs. The computation time required therefore increases from N 2

C steps for a column
to indegree · N2

C computations (indegree = 2 in our example). However, the total computation time does not
increase, because the total number of edges in the computation tree remains constant. Hence, the complexity
is O(N2

C · |VM |). The complete matching algorithm is described in Algorithm 1 and 2. Algorithm 1 initializes
the pred attributes that define the order in which the model nodes have to be considered in the calculation.
Algorithm 2 performs the actual 1 : 1 matching. It is a recursive algorithm which is started with calccolumn(v1).

In each junction node, we now have to store not only a single predecessor, but the best candidate node for
each incoming model tree edge. When tracing back the minimum cost path, this is no longer a linear chain but
rather a minimum cost tree.

The algorithm described thus far has still one drawback. When the same input region occurs as candidate
for different model nodes, the algorithm may use the same input region more than once. This is not desirable.
For example, consider searching for a human with equal left and right arm (see Figure 6). The model nodes for
both arms are the same and both sub-trees are connected to the same body node. Since either the left or right
arm in the input graph will match better to the model, the algorithm will assign the best one to both arms of
the model.

This problem can be alleviated using two techniques. First, it is possible to make the edges connecting the
arm and the body oriented edges (see Section 5.5) inducing extra cost when the left arm in the input graph is
mapped to the right arm in the model graph and vice versa. However, this does not work in all situations and we
have to extend the algorithm described above to prevent double assignments. This can be done by introducing

another attribute blocked to each computation graph node. This attribute stores the set of input regions that
are used so far. In each junction node v of the computation graph (|pred(v)| > 1), combinations of previous
node candidates k1, k2 that collide (blocked(k1) ∩ blocked(k2) 6= ∅) cannot be selected. Note that since this is a
combinatorial problem, the best candidate node for all preceding nodes cannot be determined independently. In
fact, all combinations are enumerated and checked for validity. The valid combination with the minimum cost
defines the best candidates for the preceding model nodes.

1

2
3

4

5

6

7

8 9

4,a 3,b

4,c 3,d

5,b

5,e

6,a

6,d

8,f

8,g

9,g

9,h

7,i

7,j

2,k

2,c

1,l

1,m

{a} {a,b}

{c}
{a,d}

{a}

{d}

{a,b}

{d,e}
{f}

{g}

{g}

{h}

{f,g,i}

{f,h,j}

{a,b,d,e,f,g,i,k}

{a,b,c,d,e,f,g,i}

{a,b,d,e,f,
 g,i,k,l}

{a,b,d,e,f,
 g,i,k,m}

Figure 6. Example calculation for a model graph (left) describing a human. The arrows denote the order of calculation
as induced by the pred attributes. For simplicity, the computation graph on the right has been constructed with only two
candidate nodes for each model node. The model nodes are denoted by numbers and the input nodes by letters. Selected
edges are drawn with thick arrows and the corresponding blocked attribute is shown at each node. Calculation proceeds
from left to right.

As an example, consider Figure 6. Note that node 3 selects input regions a and b as its left arm. Under the
assumption that the right arm looks identical to the left arm in the model, the dynamic programming algorithm
without blocking attribute would select the same input regions for the right arm. But since a and b are contained
in the blocked set of node 3b and node 5b, node 2 has to choose nodes d and e for the right arm. However, it
cannot ensure that both arms are assigned to the correct side, because the orientation is lost in the graph
description. This orientation ambiguity can be resolved by making the edges connecting the arms with the body
oriented edges.

6.3. 1 : N-Matching

In the third step, additional input regions are assigned to model nodes if this decreases the total cost. We define
the 1 :M matching through a mappingM1:N : VM → 2

R. It is initialized with the result of the preceding 1 : 1
matching by

M1:N (mi) :=
{
c(mi,M1:1(mi))

}
. (8)

More input regions are added with a greedy algorithm. In each iteration, a cost difference δmi
(qi, rk) is computed

which equals the cost difference that would be induced when input region rk is added to region set qi. As long
as the cost difference is below zero, the input region with the largest decrease of cost is added. Otherwise, the
algorithm ends. We define the cost difference as

δmi
(qi, rk) = ĈN

mi
(qi) +

∑

(mi,mj)∈EM

ĈE
mi,mj

(qi,M1:N (mj))

︸ ︷︷ ︸

old node and edge costs for region set qi

−ĈN
mi
(qi ∪ {rk})−

∑

(mi,mj)∈EM

ĈE
mi,mj

(qi ∪ {rk},M1:N (mj))

︸ ︷︷ ︸

new node and edges costs for regions set qi plus region rk

− εĈB(qi, rk)
︸ ︷︷ ︸

cost reduction because

of common boundary

(9)

where the first terms are the generalized node and edge costs as defined in Section 5.6. The last term ĈB

decreases the cost for region rk if it shares a common boundary with the regions in qi (cf., Fig. 7). The weighting
factor ε was set to 0.5 in our experiments.

To calculate ĈB(qi, rk), we consider each pixel on the boundary of rk and search for the region r′ that is
nearest to the pixel among all candidate regions for all model nodes. ĈB(qi, rk) is set to the fraction of pixels
for which the nearest region r′ ∈ qi. Clearly, if rk is completely surrounded by regions in qi, then Ĉ

B(qi, rk) = 1.

rk

q
i

M (m)a1:N

M (m)b1:N

M (m)c1:N

(a) testing region rk for inclusion into re-
gion set qi

rk

part of qi part of qi

common boundary

(b) common boundary be-
tween rk and qi

Figure 7. (a) In 1 : N matching, the hypothetical cost after adding input region rk is computed. If the cost difference is
lower, rk is attributed to the model node. (b) Definition of the common boundary of a region, i.e., the part of a boundary
that is inside the region set.

Finally, we can summarize the effects of the 1 : N matching step with a simple rule: a region will be added
to the set of assigned regions of a model node if

• the region is mostly surrounded by other regions mapped to the same model node,

• the region bridges the space between two regions that should be neighboring, or

• the combined region size (or color) matches better to the model node size.

Figure 8 portrays that 1 : N matching improves the accuracy of the object model detection. Since model regions
have been split into several parts by the occlusion of a foreground object, 1 : N matching is required to cover
the whole model region.

7. EXPERIMENTS AND RESULTS

An example matching result for a scene with several objects having similar characteristics is shown in Figure 9.
The object defined by the model is detected reliably. Small errors occur at the left hand of the object since the
algorithm cannot decide whether the fingers are part of the hand or not. As the size of the hand without fingers
matches better to the size of the jacket, the fingers are discarded.

Further experiments revealed that the matching algorithm is very robust. Possible errors are mostly intro-
duced due to a erroneous color segmentation. Sometimes, regions with equal color are combined into the same
region when they are close to another. Since the matching algorithm can map several input regions to a single
model region, but not several model regions to a single input region, the matching algorithm searches for another
region instead of assigning the undersegmented input region twice.

The computation time is currently about 1 second for a 720 × 576 video frame on a 550 MHz Pentium-III
processor. Most of the time is used for the color segmentation step. Hence, it is possible to test the same input
image for several object models even faster as the initial color segmentation only has to be computed once.

(a) 1 : 1-matching (b) 1 : N -matching

Figure 8. Matching the object model from Fig. 2. The image shown is part of a larger input image with several other
objects. Fig. 8a shows the result after matching the object skeleton tree. Matched regions are marked. Note that the
jacket is not covered completely since it has been oversegmented into several regions. Fig. 8b depicts the matching results
after the 1 : N -matching step. After the 1 : N matching, the jacket is completely covered.

8. CONCLUSIONS

We have presented a new algorithm for the detection of video objects that are described by manually defined
object models. This enables to find the object even when it is deformed by articulated motion. The central
matching step is carried out using a dynamic programming algorithm, which is fast and accurate. An advantage
of our model-based object detection algorithm is that it does not rely on a preceding object segmentation
algorithm. Both object segmentation and object recognition are performed in a combined framework. This
eliminates the need for accurate object segmentation masks, which are required e.g. in shape-based object
recognition algorithms.13

Up to now, we have processed mainly cartoon images∗ since this allows to use a simple color-based algorithm
for segmentation. Further research will be conducted to generalize the region definition and features to support
textured regions. This will make the algorithm applicable to natural images. The performance of region definition
is still limited at the moment. However, the current implementation can be used to identify well-defined objects,
such as logos in natural video sequences.

REFERENCES

1. C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Region-based image querying,” in CVPR’97 Workshop on

Content-Based Access of Image and Video Libraries, 1997.
2. J. Li, J. Z. Wang, and G. Wiederhold, “IRM: Integrated region matching for image retrieval,” in ACM Multimedia,

2000.
3. Y. Chen and J. Z. Wang, “A region-based fuzzy feature matching approach to content-based image retrieval,” IEEE

Transactions on Pattern Analysis and Machine Intelligence , pp. 1252–1267, 2002.
4. S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph matching,” IEEE Transactions on Pattern

Analysis and Machine Intelligence , 1996.
5. C. Schellewald and C. Schnörr, “Subgraph matching with semidefinite programming,” tech. rep., CVPR, University

of Mannheim, Nov. 2002.
6. M. Pelillo, K. Siddiqi, and S. W. Zucker, “Continuous-based heuristics for graph and tree isomorphisms, with appli-

cation to computer vision,” in NIPS 99 Workshop on Complexity and Neural Computation, Dec. 1999.

∗The video images shown in this paper have copyright by ZDF (Zweites Deutsches Fernsehen), Germany.

(a) input image

(b) found object model (second from the right)

Figure 9. The object model shown in Figure 2 is searched for in an input image with several similar objects.

7. A. Torsello and E. R. Hancock, “Efficiently computing weighted tree edit distance using relaxation labeling,” in Energy

Minimization Methods in Computer Vision and Pattern Recognition, Third International Workshop, EMMCVPR

2001, France, Lecture Notes in Computer Science 2134, Springer, Sept. 2001.
8. D. Eppstein, “Subgraph isomorphism in planar graphs and related problems,” tech. rep., Dept. of Information and

Computer Science, University of California, May 1994.
9. H. Greenspan, G. Dvir, and Y. Rubner, “Region correspondence for image matching via EMD flow,” in IEEE

Workshop on Content-based Access of Image and Video Libraries, June 2000.
10. D. Farin and P. H. N. de With, “Towards real-time MPEG-4 segmentation: a fast implementation of region merging,”

in 21st Symposium on Information Theory in the Benelux, pp. 173–180, 2000.
11. T. Brox, D. Farin, and P. H. N. de With, “Multi-stage region merging for image segmentation,” in 22nd Symposium

on Information Theory in the Benelux, May 2001.
12. M. Pelillo, K. Siddiqi, and S. W. Zucker, “Matching hierarchical structures using association graphs,” tech. rep., Yale

University, Center for Computational Vision & Control, Nov. 1997.
13. S. Richter, G. Kühne, and O. Schuster, “Contour-based classification of video objects,” in SPIE Proc. Storage and

Retrieval for Media Databases, 4315, pp. 608–618, Jan. 2001.
14. R. Fablet, P. Bouthemy, and M. Gelgon, “Moving object detection in color image sequences using region-level graph

labeling,” in 6th IEEE International Conference on Image Processing, ICIP, Oct. 1999.

