
Automatic Video-Object Segmentation Employing

Multi-Sprites with Constrained Delay

Dirk Farin1 and Peter H.N. de With1,2

1University of Technology Eindhoven, 5600 MB Eindhoven, Netherlands
2LogicaCMG, TSE, 5605 JB Eindhoven, Netherlands

Abstract

This paper proposes an automatic video-object segmenta-
tion system for consumer media, based on the background
subtraction technique. In order to allow for camera mo-
tion, the input images are aligned to a large panoramic
background-sprite image. A multi-sprite technique is ap-
plied to minimize the size of the synthesized sprite images.
In contrast to previous algorithms, which required multiple
passes over the input data, the proposed algorithm enables
online processing with a fixed processing delay. This is im-
portant for implementation in consumer devices which have
to run in real-time with constrained resources. We provide
example results illustrating that a real-time segmentation on
memory-constrained hardware is feasible.

11.3-4

Introduction

Automatic video-object segmentation is a prerequisite for
many advanced video analysis and compression techniques.
These automatic video analysis systems become increasingly
important for consumer products because they enable tech-
nologies like intelligent searching in video collections, or
home-surveillance systems. Moreover, object-oriented video
coding tools like proposed in MPEG-4 yield a higher com-
pression ratio, because they transmit the scene background
independently from the foreground objects [4].

The proposed automatic segmentation system is based on
the background subtraction technique [1]. The central step
in this technique is to synthesize a camera-motion compen-
sated background image (sprite) that does not show any
foreground objects. Generally, this background image will
be much larger than the input resolution if camera mo-
tion is present. Foreground objects are removed from the
background image by a temporal averaging process. Subse-
quently, the foreground objects can be found by detecting
the change between the background image and the input.

Many television cameras and most surveillance cameras
are pan-tilt-zoom cameras, which can rotate around two axes
and which can change the zoom. In this case, it is possible to
align the images of a camera pan into a sprite image. How-
ever, if the camera rotation angle exceeds a specific angle,
the area in the sprite onto which the input images are pro-
jected grows quickly and, ultimately, it becomes impossible
to synthesize a common background image. This restric-
tion can be eliminated by first splitting the input sequence
into several frame ranges, and computing independent back-
ground sprites for each range. An algorithm to compute the
optimal partitioning of the input sequence, minimizing the
total sprite area has been proposed earlier [2]. To compute a
globally optimal solution, this algorithm has to consider the
complete input sequence at once. In a real-time system, this
is impossible since online processing with a maximum delay

has to be assured.
Unfortunately, a general low-delay video segmentation sys-

tem is not possible because the sprite image first has to be
synthesized in the encoder from many input frames. These
processing steps require buffers that store the frames of at
least one segment, i.e., the frames that will be composed into
a single sprite image. Hence, we propose a compromise, in
which the maximum delay is constrained by imposing a limit
on the number of frames that are combined into one sprite
image.

Online Sequence Partitioning

The multi-sprite partitioning splits the input sequence into
separate segments, for which separate background sprites
will be constructed in the successive steps. In order to reduce
transmission bandwidth and computation time in the subse-
quent processing steps, we desire to minimize the total area
covered by all sprites. We first consider the problem of deter-
mining the global optimum and then incorporate constraints
to limit the maximum and minimum number of frames per
segment to fix the processing delay.

Let P =
`
(1, p1 − 1), (p1, p2 − 1), . . . , (pn−1, N)

´
be a par-

titioning of the video sequence of length N into n segments.
The optimization problem can then be formulated as deter-
mining the partitioning P ∗ for which the sum of all sprite
costs (required area) is minimal:

P ∗ = arg min
P

X
(i,k)∈P

||Si;k||. (1)

With ||Si;k||, we denote the cost for synthesizing a sprite
covering frames i to k. This minimization problem can be
viewed as a minimum-cost path search in a graph, where the
graph nodes correspond to the input frames plus an addi-
tional dummy start node, V = {0, . . . , N}. The graph is fully
connected with directed edges E = {(i; k) | i, k ∈ V ; i < k}.
Each edge (i; k) is attributed with edge costs ||Si+1;k||. Ev-
ery path from the start node 0 to node N defines a possible
partitioning, where each edge on the path corresponds to
one segment. Consequently, the minimum cost path gives
the minimum cost partitioning P ∗.

The algorithm described above computes the globally op-
timal partitioning for a sequence, but it cannot be computed
until the complete sequence has been processed. For a prac-
tical implementation, we have to limit the maximum look-
ahead in order to constrain the maximum processing delay.

Let smax and smin be the maximum and minimum number
of frames to integrate into one sprite, respectively. Instead
of constructing the complete computation graph for the en-
tire sequence, we modify the algorithm such that a graph
covering only the first smax frames is generated. Moreover,
all graph edges that span less than smin frames are omitted.
Note that this graph can be built online while new input

frames are received. When smax frames are available, the
minimum cost path is computed as before. This path again
defines a partitioning, but now, we consider only the first
segment. The subsequent processing stages can now begin
to work in parallel on the sprite defined by the first segment.
As new input images arrive at the multi-sprite algorithm, it
again constructs the graph for the next smax frames.

This algorithm does generally not give a globally optimal
solution, but it limits the maximum memory requirement
and processing delay that is introduced by the sprite gener-
ation to smax frames.

Segmentation System Architecture

The proposed automatic segmentation system (Fig. 1) has
been tuned for typical consumer video content, like sports
or home surveillance. It is composed of several algorithms
(see [3] for more detailed information):

• Feature-based motion estimation. This module com-
putes interframe camera-motion parameters for pairs of suc-
cessive frames.
• Multi-sprite partitioning. Given the set of interframe
motion parameters, the multi-sprite partitioning separates
the input sequence in segments for which independent back-
ground images should be synthesized.
• Direct motion estimation. Construction of a static
background image requires global-motion parameters with
high accuracy. This step refines the motion parameters with
a gradient descent algorithm.
• Background image reconstruction. This step com-
bines the input frames into a global background image and
eliminates the foreground objects from this background im-
age. A pure background image is obtained by temporal fil-
tering of the camera-motion compensated input frames.
• Background subtraction. This step computes the
video-object masks by comparing the input images with the
pure background image. It also incorporates global-motion
parameters to compensate the camera motion.

The processing in this framework is organized in a pipeline
structure, where each stage operates concurrently on one seg-
ment of the input sequence.

The first stage in the pipeline computes the interframe
motion parameters. The multi-sprite algorithm is interleaved
to compute the next segment size whenever smax frames are
buffered. Once the segment length is known, the second
stage can begin to compute accurate motion parameters for
each input frame of the segment. The input images for the
second stage are taken from the image buffers that delayed
the input by smax frames.

Stage 3 uses the accurate motion parameters to synthesize
a background image. When Stage 3 finishes the synthetiza-
tion of the background image, the image is moved to a queue
of sprite-image buffers, such that Stage 3 can reconstruct the
next sprite image while Stage 4 works on the segmentation
of the previously computed segments.

If the system generates a sequence of short segments, sev-
eral sprite-image buffers are required to store these images.
To limit the number of buffers, we can limit the minimum
length of a segment to include at least smin frames. With this
limitation, we only require smax/smin sprite-image buffers in
the worst case.

input
sequence

background
subtraction

constrained
multi-sprite
partitioning

object
masks

motion parameters (accurate)

feature-based
motion

direct motion
estimation

background img.
reconstruction

image buffers
(smax)

image buffers
(smax)

image buffers
(smax)

motion parameters (approximate)

It-smax

It-3smax

(parallel access
 to all images)

background
image

(smax/smin frames)

st
ag

e
1

st
ag

e
2

st
ag

e
3

st
ag

e
4

sprite
image

background
image buffers

It

Fig. 1. The proposed online segmentation system. The maximum

number of frames that are covered by a single sprite is limited to

smax frames. Hence, the processing can be pipelined with image-

buffers (each with space for smax images) at processing stages 2-4

and sprite-image buffers at stage 4.

Results and Conclusions

Experiments with various sequences (Fig. 2) show that a
delay of smax ≈ 50 − 100 is sufficient to obtain a nearly
optimal partitioning. Given the fact that video analysis can
be carried out on monochrome images at CIF resolution, this
results in a total memory usage of about 16−32 MB. Hence,
with this approach, it becomes feasible to integrate real-time
video analysis with a processing delay of only 2-4 seconds
into many consumer products, like video hard-disk recorders
with integrated data-bases, or surveillance systems.1

0.5M

 1M

 1.5M

 2M

 2.5M

 3M

 3.5M

 4M

 0 50 100 150 200 250 300

sprite area [pixels]

maxmaximum sprite size s

stefan
rail

nature

sequences:

Fig. 2. Generated total sprite sizes for varying smax.

References

[1] T. Aach and A. Kaup. Bayesian algorithms for adaptive change detec-

tion in image sequences using markov random fields. Signal Processing:

Image Communication, 7:147–160, 1995.

[2] D. Farin, P. H. N. de With, and W. Effelsberg. Minimizing MPEG-4

sprite coding-cost using multi-sprites. In SPIE Visual Communications

and Image Processing (VCIP), volume 5308, pages 234–245, Jan. 2004.

[3] D. Farin, P. H. N. de With, and W. Effelsberg. Video-object segmenta-

tion using multi-sprite background subtraction. In IEEE International

Conference on Multimedia and Expo (ICME), volume 1, pages 343–346,

June 2004.

[4] K. Jinzenji, H. Watanabe, S. Okada, and N. Kobayashi. MPEG-4 very

low bit-rate video compression using sprite coding. In Proc. IEEE In-

ternational Conference on Multimedia and Expo, page 2, Aug. 2001.

1Example results can be found at http://vca.ele.tue.nl/demos/segmentation.

