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ABSTRACT

This paper presents a software-only MPEG encoder
implementation which uses adaptive quantization and
scene change detection to enhance the image quality.
Scene change detection is coupled to the bit-allocation
process, providing a more constant image quality over
time. Simultaneously, it is used to assign picture coding
types for enabling easy, lossless cutting at scene change
positions in a later editing process. Furthermore, a new
fast bit-rate estimation algorithm is proposed, which is
accurate enough to avoid macroblock-level rate-control.
Although our current implementation concentrates on
an MPEG-2 implementation, all concepts are readily
applicable to MPEG-4 encoders.*

I. INTRODUCTION

In the field of MPEG encoding, real-time hardware
encoders are widely used. However, for offline encoding
applications like DVD authoring, software encoders offer
the opportunity to use more memory and time on image
content analysis to provide a better image quality.

An important aspect of video encoders is the quan-
tization sub-system, comprising bit-allocation, rate-
control, and adaptive quantization. Bit-allocation is
usually implemented based on the techniques described
in the so-called Test Model 5 (TM5) [17]. However,
this algorithm is known to perform poorly at abrupt
scene changes. Hence, various modifications have been
published [18], [13] which introduce new I-frames after
the scene change and adjust the bit-allocation appropri-
ately. We propose a new modification which not only
prevents quality degradation after scene changes, but
even improves image quality by exploiting the tempo-
ral masking effect. Furthermore, it enables easy editing
operations at scene change positions in the compressed
domain.

Popular approaches for rate-control are based on feed-
forward control [2], Lagrange multiplier based dynamic-
programming [3], or estimates of the rate-distortion
characteristic [5] to choose quantization-scale factors.
Feed-forward control usually exposes difficulties with
discontinuities in the input signal characteristics. In the
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case of the TM5 algorithm, this can even lead to un-
equal quality distribution in a single picture. Lagrange-
multiplier based approaches find optimal solutions to
the quantization problem, but are very computation-
ally complex. Several approaches have been published
which approximate the rate-distortion characteristic by
a parametric model [6]. However, most techniques re-
quire that the model parameters have to be adapted,
which usually means that the frame has to be encoded
at several control points to determine the model param-
eters. Moreover, most models are frame-based and do
not consider that an MPEG coded frame can consist of
intra coded blocks as well as inter coded blocks. As the
distribution of block modes may vary in a sequence of
frames, the model accuracy is reduced.

We use a bit-rate estimation model that is based on
macroblock units and that differentiates between mac-
roblock coding modes. This enables an accurate estima-
tion for coded frame size without requiring trial encod-
ings to adjust model parameters. Our algorithm is an
extension of the approach in [10]. Besides the number of
non-zero DCT coefficients to estimate the bit-rate, we
also use the value of the coefficient in our model.

Adaptive quantization algorithms that are based on
accurate models of the human visual system are too
computationally complex for practical implementations.
Hence, our adaptive quantization algorithm is based on
low-level image features and is computationally efficient.

The paper is organized as follows: first, we give a
short introduction into the TMJ5 bit-assignment algo-
rithm on which our encoder is based. Subsequently, we
modify this algorithm to take scene changes into ac-
count, and we introduce a new adaptive quantization
algorithm which we are using instead of the TM5 tech-
nique. We describe our bit-rate estimation algorithm
and show how scene adaptive bit-allocation, adaptive
quantization, and rate-control can be combined into a
complete system. Finally, we note some implementation
issues and present results.

II. Bir-ALLOCATION IN TM5

Since our bit-allocation algorithm is based on the
TM5 algorithm, we briefly describe the TMJ5 bit-
allocation technique in this section. The TM5 bit-
allocation is based on the assumption that the coded
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Fig. 1. Estimated picture complexities for the “table-tennis” sequence. This sequence contains a sudden scene change after frame 130.
The coding parameters are a nominal GOP size of 16, P-distance 4 and a bit-rate of 850 kbit/s.

bit-rate can be estimated by a simple model as:

By =2t
Qt
where B; is the number of bits required to code the
picture, (); is the average quantization scale and X; is
a scene-dependent complexity parameter. The values
X, Xp, and X are estimated by multiplying the average
quantization scale and measured number of bits in the
previously coded picture of the same coding type. This
prediction is based on the assumption that the image
content has slowly varying statistics. Hence, the bit-
allocation process needs some time to stabilize after a
large change of image content.

The intention of the TM5 bit-allocation process is to
keep the ratio of quantization scales between different
picture-coding types constant. The ratio is expressed by
the constants K, = Q,/Q; and K = Qp/Q;. As each
P-picture is used by several B-pictures as temporal pre-
diction, an increase of P-picture quality also improves
the quality of the dependent B-pictures. Consequently,
bits spent to increase the quality of P-pictures result in a
greater overall quality improvement as the same amount
of bits spent on a B-picture. Hence, B-pictures are quan-
tized slightly more coarsely and a K > 1 is used. The
actual value of K} is depending on the quantization ma-
trices and B-picture distances. TMJ5 suggests the use
of K, =1 and K = 1.4 for a P-picture distance of 3.
Bits are assigned to each picture just before it is coded
according to
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where R is the number of bits remaining for coding the
current GOP, and N,, N, are the number of uncoded
P and B-pictures, respectively, remaining in the current
GOP. The bit-allocation is lower bounded thereby en-
suring that a minimum number of bits is assigned to
each picture. Specifying a minimum bit-rate prevents
extremely low-quality pictures in cases where the com-
plexity estimation is much too low. This can for exam-
ple happen when a complicated picture is coded after a
black picture with very low complexity.

III. SCENE CHANGE DETECTION

The assumption that the scene statistics are varying
slowly forms a fundamental limitation of the TM5 bit-
allocation technique. This assumption is particularly
not true when the video sequence contains sudden scene
changes. In this section, we show how this problem can
be alleviated using a simple scene change detection al-
gorithm.

Consider the situation depicted in Figure 2 where
an abrupt scene change occurs between the reference
pictures P; and P,. Because P, differs strongly from
P;, only few macroblocks in Py will find good tempo-
ral predictions in P3. Consequently, a large number of
macroblocks will be coded with intra-mode (fallback),
thereby requiring more bits to code. Since the TM5

scene change
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Fig. 2. Sudden scene change in the middle of a GOP.



bit-allocation scheme does not use look-ahead, it is not
aware of the scene change and assigns the bits under the
assumption that no change has occurred. This proposed
bit-assignment will be too small to allow an adequate
quality for P,;. Furthermore, the decreased quality of
this P-picture will also decrease the quality of the sur-
rounding predicted pictures because of the bad temporal
prediction quality.

An additional problem arises in the calculation of the
picture complexities. As the complexity for P, exceeds
the usual P-picture complexity, X, will be set to an
unusually high value, which consequently will lead to
an oversized bit-budget for the successive P-picture Ps.

This behaviour can be clearly observed in Figure 1a,
which shows the estimated picture complexities as cal-
culated by TM5. The sequence contains a sudden scene
change at frame 130 and the increase in the following
P-picture complexity is easily visible. There is also an
increase in the estimated B-pictures complexities around
the scene change, but this increase is not very significant
because the B-pictures always have at least one appro-
priate reference frame for prediction.

A. GOP STRUCTURE ADJUSTMENT

To alleviate the previous difficulties, we propose to
modify the structure of the group-of-pictures (GOP) at
scene changes. After sudden scene changes, we enlarge
or shrink the preceeding GOP to some extent so that
the next GOP starts exactly with the first picture of
the new scene (see Figure 3).

scene change
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new GOP

Fig. 3. Proposed GOP arrangement at a sudden scene change.
The GOP after the scene change is coded as a closed-GOP. Note
that the GOP preceding the scene change as been enlarged by one
B-picture to align the end of the GOP with the scene change.

As the first picture of the new scene (in coding order)
is now coded as an I-picture (as opposed to a P-picture
in Figure 2), the estimation of P-picture complexity is
not disturbed by the scene change and the bit-allocation
stabilizes faster. Assuming that the I-picture complexity
does not increase dramatically in the new scene, enough
bits are assigned to the I-picture for enabling a good
picture quality.

Figure 1b shows the estimated picture complexities of
the same “table-tennis” sequence as in Figure la , but
now with active use of our scene change detection. It
can be seen that the mismatching peak in the P-picture
complexity has disappeared and the estimation stabi-
lizes very quickly for the new scene. This behaviour has
a positive effect on the picture quality after the scene
change. Figure 4 shows the measured PSNR for both
disabled and enabled scene change detection under the

same conditions. Obviously, without scene change de-
tection, there is a sharp decrease of image quality after
the scene change by about 5 dB. With enabled scene
change detection, the decrease is both shorter in time
and much smaller (about 1 dB). Figure 5 shows the
difference in image quality of the picture following the
scene change.

PSNR/dB
42

T T
with scene-change detection

without scene-change detection -------

40

38

36 -

32

30 b i B

28 I I I I I
0 50 100 150 200 250 300

frame

Fig. 4. Measured PSNR in dB for the “table-tennis” sequence,
coded in CIF resolution at 850 kbit/s. A scene change occurs after
frame 130.

B. TEMPORAL MASKING EFFECT

The new GOP structure also enables the utilization
of the temporal masking effect of the human visual sys-
tem. Temporal masking refers to the property of the
human eye that it cannot perceive a picture at its full
quality immediately after a sudden change. This ef-
fect can be exploited to code the first few pictures after
a scene change with a lower quality without any per-
ceptible degradation. When we use the GOP structure
shown in Figure 3, this can be achieved by decreasing
the number of bits assigned to the B-pictures between
the scene change and the I-picture. The saved bits can
now be used in the following pictures to increase their
quality. We incorporate this temporal masking scheme
into the TM5 framework by modifying the bit-allocation
equations. For each (B-)picture with temporal reference
n, we introduce an additional factor K.(n) which indi-
cates the strength of the temporal masking effect at pic-
ture n. Similarly to the factors K, and Kj in the TM5
model, this factor modifies the ratio of average quanti-
zation scales for the pictures in a GOP. Larger values
of K,.(n) lead to coarser quantization and consequently
to a reduced image quality.

As Kg.(n) varies for different B-pictures in a GOP,
the bit-allocation equations of TM5 have to be gener-
alized. Our modified bit-allocation equations take the
new factor into account and are defined as

R
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Fig. 5. Results of coding a picture immediately following a sudden scene change. Both pictures are coded as B-pictures under the same

conditions. The picture at the right has a much better quality.
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where s is the total GOP size. For simplicity of notation,
we set K,.(n) = oo for T and P-pictures. If K .(n) =
1 for all B-pictures, the formulas become exactly the
allocation equations of TM5. Note that the modified
bit-allocation now depends on the temporal reference
of the picture since not all B-pictures are assigned the
same amount of bits.

Because the temporal masking effect lasts for approx-
imately 100ms, we increase K;.(n) to a value > 1 for the
B-pictures directly following the scene change up to the
I-picture. For all other B-pictures, we set Kq.(n) = 1.
Combined, we have:

v > 1 for B-pictures after a scene ch.,
Ky (n)=1<1
00 for I and P-pictures.

for all other B-pictures,

The actual selection of a suitable v is subjective and
has to be determined empirically. We have found that
values of K;.(n) =~ 2 give good results.

C. SiMPLIFIED EDIT OPERATIONS

Adapting the GOP structure to the scene changes
also has an advantageous effect for video postprocess-
ing. Note that the B-pictures after the scene change
will not benefit from forward prediction, because the

forward prediction reference-frame contains image con-
tent from the previous scene. Consequently, forward
motion-prediction can be disabled for the B-pictures af-
ter a scene change and the GOP can be coded as a
closed GOP. This allows the terminating GOP of the last
scene and the first GOP of the new scene to be coded
independently. A direct beneficial consequence is that
splitting and concatenating the individual scenes in the
MPEG stream is now possible without recompression.
The practical consequence is that all edit operations at
scene change positions can be performed in a computa-
tionally efficient way and without loss of quality.

D. SCENE CHANGE DETECTION

The objective of scene change detection in our ap-
plication is to find favourable positions to start new
GOPs. However, at the same time, we want to prevent
the creation of very short or very long GOPs, which
would decrease the overall coding performance. Hence,
let S;nin be the minimum allowed GOP-size and $;,44
the maximum GOP-size (typically, we set s = 6 and
Smaz = 18).

As sporadic detection errors only have a slight im-
pact on image quality, a computationally efficient scene
change detection algorithm can be used instead of more
accurate, but computationally expensive algorithms.
We chose to use a scene change detector based on bright-
ness histogram differences [9]. This kind of detector
works well with sudden changes, but it cannot detect
slow transitions between scenes. However, for our ap-
plication, this property is exactly desired, because we
are only interested in sudden changes. Slow transitions
cannot be coded more efficiently using a modified GOP



structure and also do not trigger the temporal masking
effect.

For the scene change detection, we use a look-ahead of
Smaz + 1 pictures and compute the histogram differences
d(n,n + 1) between all pairs of successive pictures. To
find a scene change, we search for the maximum value
of d(n,n + 1) - w, and classify it as a scene change if
it is above a threshold ¢,. The weighting factor w, is
used to favour GOP sizes near the nominal size m. It is
defined as:

v = L2+ GZee)) for i<m
¢ %(1+(SZ”G‘;”:T;)°‘) for i>m

where a can be adjusted to change the stringency of the
encoder to use the nominal GOP size (see Fig. 6). If
the maximum d(n,n + 1) - w, < t,, no scene change is
detected and the nominal GOP size is used.
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Fig. 6. Scene change detection weighting factor.
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Fig. 7. GOP structure assignment process. The scene change
detection range [Simin; Smaz] is searched for the maximum picture
difference. The next GOP will be structured to end at this po-
sition. Subsequently, a new scene change detection is initiated
beginning at this position.

E. REFINEMENTS

The robustness of our change detection algorithm can
be further improved by introducing a second threshold
t; (i < ty) to allow a third class for cases in which
we cannot definitely decide if the observed difference
has been caused by a scene change or by a fast moving
scene. If the maximum histogram difference d,,q, is
lower than ¢;, we assume that no scene change is present

and the nominal GOP size m is chosen for the GOP to
be coded. This corresponds to the no scene change case
defined above. If the maximum histogram difference lies
in between the two thresholds, i.e. t; < dpar < tu, the
GOP size is modified and optimized with respect to the
scene change, but the temporal masking effect is ignored
(i.e. Kg(n) = 1 for all B-pictures). This compromise
is to benefit from the rearranged GOP structure in case
that it is a scene change, and otherwise not to degrade
the image quality in cases where no sudden scene change
occurs.

IV. ADAPTIVE QUANTIZATION

Adaptive quantization is applied at the macroblock
level to reduce the amount of quantization noise in ar-
eas where it is most visible to the Human Visual System
(HVS). The additional bits which are needed to provide
the increased accuracy are obtained by reducing image
quality in areas with fine, high-contrast texture (high-
activity areas). The HVS is less sensitive to additional
noise in these areas and cannot perceive the quality re-
duction.

A. ALGORITHM

Although our algorithm is not based on a discrete
macroblock classification, let us consider the following
three types of blocks:

o Flat blocks with only low detail. These blocks usually
occur in uniform backgrounds like the sky in a natu-
ral scene. The HVS is sensitive to blocking artifacts in
regions of flat blocks. Hence, a fine quantization scale
should be chosen. As these regions only contain a few,
low-frequency coefficients, the number required bits is
small.

o Textured blocks containing fine detail texture with
high variance. This corresponds to textured surfaces
(e.g. grass), and regions with many small objects that
are too small to be clearly visible. Because of the high
frequencies in these blocks, they need a large amount
of bits to be coded. Quantization noise in such areas is
hardly visible and the quality can be decreased.

o Mized blocks containing both flat and textured ar-
eas. These are usually boundary blocks between flat
and textured areas. The texture areas in these blocks
generate high-frequency coefficients which are quantized
coarsely. Unfortunately, the quantization noise of those
high-frequency coefficients can be easily perceived in the
flat areas of the block, showing the typical ringing effect
at object boundaries. Hence, these mixed blocks should
be quantized with a fine step-size to reduce ringing ar-
tifacts.

The fundamental approach of our adaptive quantiza-
tion is to move bits from image regions with textured
blocks to mixed blocks, while the amount of bits as-
signed to flat blocks should not be changed. Since the
transition between block types is smooth, we determine
a real-valued gnoise indicator for each MB, which serves
as a measure for predicting the perceptual visibility of
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Fig. 8. Principle used for adaptive quantization. Textured blocks
will receive a negative gnoise as act > rng. Mixed blocks will
receive a positive gnoise because act < rng. In flat blocks act
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the quantization noise. The gnoise is evaluated by
gnoise = a.-rng” — 3 - act’,

where «,3,7,0 are empirically determined constants.
The feature act is a measure of the activity in a block,
which is high for high-frequency textures and low for flat
blocks. The parameter rng is a feature describing the
amount of ringing noise that is expected to be visible in
the block. Figure 8 schematically depicts the relation
of the three measures. Texture blocks will receive a low
value of gnoise, mixed blocks will receive a high value,
and flat blocks are assigned a value of about zero.

To determine appropriate values for the measures act
and rng, we partition each macroblock into 4 x 4 sub-
blocks of size 4x4 pixels each. For each sub-block located
at (z,y), we calculate a sub-block activity as

of : : of . :
subact(y, ) = Z |%(x +z,y+])‘ + ‘a—y(w +i,y+7)|-
0<i<3
0<j5<3
This sub-block activity is high for textured sub-blocks
and low for flat sub-blocks. Subsequently, for each mac-
roblock located at (zg,%0), we define

act(zo,y0) = E : SubGCt($0+4i1yo+4J)’
0<i<3
0<5<3
and

TNY(z0,y0) = Z
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with P = {(5,,3,5 +4), (ji.j + 4,5) |i € {0,4,8,12},

JjE€E {0,8}} (see Fig. 9).

Adaptive quantization is applied by subtract-
ing gnoise from the quantization control parameter
MQUANT used in the MPEG coding process.
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Fig. 9. Calculation of rng measure: absolute difference between
each pair of sub-block activities indicated by double arrows is
calculated and all differences are summed up.

B. RESuULTS

Figure 10 shows four regions of a frame from the “ste-
fan” test-sequence, each coded with constant quantiza-
tion and with adaptive quantization at the same bit-
rate. The quality of the regions 10(e),(f) is clearly im-
proved by the adaptive quantization algorithm. The
bits used to improve these regions were taken from the
high activity area of the picture 10(g). However, the
reduction of quality in this region is more difficult to
perceive.

We observed a disadvantage of our algorithm in im-
age areas with small text. The algorithm treats the
text as high-activity area and reduces its quality (see
Fig. 10(h)). This effect can be eliminated by integrating
a text-detection algorithm which extracts areas contain-
ing text and prevents increasing the quantization scale
in those areas.

V. RATE-CONTROL

The task of the rate-control is to find a suitable
quantization-scale so that the assigned number of bits
is generated. One approach is to use the bit-rate model
described in Section II. However, this model is not ac-
curate enough to assure VBV compliance without re-
compression. The TM5 approach to achieve a sufficient
accuracy is to observe the buffer fullness while coding
the picture and to modify the quantization-scale to com-
pensate the error. This macroblock-layer rate-control
has two difficulties:

e« The quantization control parameter is determined
from the difference between the real buffer fullness and
a virtual buffer fullness. To compute the virtual buffer
fullness, a spatially uniform distribution of the bits in a
picture is assumed. This assumption is not true for most
natural images. Consider a scene with a sky that can be
coded with only a few bits and a fine-textured ground
requiring more bits. As TM5 tries to distribute the bits
evenly across the image, the sky is coded with more bits
than needed, while on the other hand, the ground will
be assigned insufficient bits for an adequate quality.

¢ At low bit-rates, a frequent change of the quantizer
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Fig. 10. Illustration of adaptive quantization. Pictures (a)-(d) are based on constant quantization-scale, while pictures (e)-(h) result

from using adaptive quantization.

step-size results in coding overhead and reduces overall
image quality.

Because of these disadvantages, a better approach is
to find a single, constant reference quantization step-size
that will result in a picture size close to the allocation.
Clearly, this is only achievable with a more accurate
bit-rate model. Comparisons with optimal quantization
algorithms [7] show that using frame-constant quantiza-
tion scales comes close to the optimum achievable image
quality.

A. BIT-RATE ESTIMATION

Our bit-rate estimation model simplifies the problem
of finding a bit-rate estimate for a whole picture by sep-
arately estimating the number of bits for each DCT-
block. Apart from the fact that the estimation can be
made more accurate for this small coding unit, this also
allows an estimation when the quantization-scale is not
constant in the picture and different coding-modes are
used.

Since we consider the trial encodings at several
quantization-scales for only adjusting the model param-
eters as a too costly task, we use features which can
be directly and easily extracted from the available data.
Experiments have shown that an accurate estimation
can be calculated for each DCT coefficient block using
only the unquantized coefficients as features.

For each intra-coded block (inter-coded blocks will be
considered later), we calculate the absolute sum of all

DCT coefficients s(u,v) according to

Si= >

u7v€[0;7]7
(u,0)#(0,0)

[s(u,v)].

As the DC-coefficient in intra-coded blocks is coded in-
dependently using a DPCM coder, it is excluded from
the estimation.

To determine the function fr(Sr,q) = b mapping the
feature S; to the number of bits b for a quantization-
scale g, we coded several test-sequences using fixed
quantization-scales and measured the number of bits
generated for each DCT block. For each pair of S and
q, fr was set to the mean number of measured bits.
To reduce the amount of data and fill undefined values,
a piece-wise linear approximation of f; was calculated
for each ¢. Figure 11a shows fr(St,q) for ¢ = 10 and
q = 40, together with the standard deviation of the mea-
sured data.

Because the input-data statistics of inter-coded blocks
differs from intra-coded blocks and different quantiza-
tion matrices are used, we use a separate estimation
for inter-coded blocks. The estimation is based on the
same technique with the difference that for inter-blocks
the DC-coefficient is also included in the sum of coeffi-
cients:

SP = Z |S(U’5U)|'

u,v€E[0;7]

For each picture, the number of bits can now easily
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Fig. 11. Measured number of bits per DCT-block for single DCT blocks at different quantization-scales. The standard deviation is

portrayed by the small vertical bars.
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B. OFFSET-COMPENSATION

Figure 13 shows the accuracy of the estimation on a
sequence with several scene changes. Although the es-
timation accuracy is good, it can be seen that the esti-
mated bit-rate differs from the actual bit-rate by a con-
stant offset which seems to be scene dependent. This off-
set is caused by fixed header information, coding-mode
flags, and motion-vectors (for inter-coded blocks), which
are not included in the estimation. Furthermore, differ-
ent input image statistics seem to have an influence on
the estimation offset.

After a picture has been coded, the estimated number
of bits as well as the actual coded image size is known
and the offset can be determined. We compensate the
offset by adding an estimate of the offset to the bit-rate
estimation, which is obtained from previously coded pic-
tures. The offset is applied at the macroblock level,
with separate offsets for intra-mode macroblocks and
inter-mode macroblocks. To adapt the offset to chang-
ing image content, it is calculated based on a moving
average over a number of previously coded blocks of the
same coding type (see Figure 12). The average has to be
computed on enough blocks to cover several frames for
preventing an oscillation of the offset estimation at scene
cuts where the type of image content changes suddenly.

C. RESULTS

We have evaluated our bit-rate estimation algorithm
by coding the concatenation of the test sequences “table-

compensated
estimation
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estimation

@
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Fig. 12. Compensation of offset between bit-rate estimation and
coded bit-rate.

tennis”, “salesman”, “deadline”, and “stefan” with con-
stant quantization. In a first experiment, we coded the
sequence with I-frames only. With enabled offset com-
pensation, the maximum deviation of the estimation
from the real size is only about 2% (see Fig. 13a). These
maxima are reached when the image content changes
rapidly because of scene changes or fast motion. When
the image content is changing only slowly, the estima-
tion error is neglegible.

In the second experiment, we coded the sequence with
all frame-types. The estimation error of P and B-frames
is considerably higher because many bits in predicted
blocks are used for coding motion-vectors and only few
are used for coding the residual. As our estimation only
considers the bits used for coefficient coding, it is clear
that the deviation is much larger. However, when acti-
vating offset compensation, the number of bits used for
coding the motion-vectors get approximated by the es-
timation offset. Consequently, the offset compensation
achieves to improve estimation accuracy such that the
typical deviation is only about 10%.
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Fig. 13. Estimation accuracy. The test-sequences “table-tennis”, “

the robustness at hard scene cuts.

VI. THE TOTAL QUANTIZATION CONTROL SYSTEM

Figure 14 depicts how our rate-control and adap-
tive quantization is integrated into the encoder. The
block feature computation unit pre-calculates the fea-
tures S7, Sp used for rate-control as well as rng, act used
for adaptive quantization. The adaptive quantization
block uses these pre-computed features to determine an
MQUANT-modulation value. If images are coded that
do not contain high-activity areas, adaptive quantiza-
tion cannot operate favourably, since there are no areas
where bits could be saved. The block deactivate adap-
tive quantization detects this case by summing up all act
values in the image. If the sum is below a threshold, the
MQU ANT-modulation is switched off.

Rate-control is realized by adding a picture-level con-
stant offset to the M QU ANT-modulation such that the
output image is coded with the amount of bits assigned
in the bit-allocation stage. To determine the appropri-
ate MQUANT offset, an iterative process repeatedly
estimates the number of bits and adjusts the offset until
the allocation is reached. Bit-rate estimation is real-
ized with the technique described in Section V. Note
that this can be computed very efficiently based on the
pre-computed features with simple table-lookups. The
block rate control compares the number of generated bits
with the allocation and modifies the M QU ANT offset
accordingly until the actual size comes sufficiently close
to the allocation.

VII. IMPLEMENTATION ASPECTS

Our software implementation is independent of a spe-
cific system type and has been tested on Intel x86, Sun
Sparc, and ARM based systems. On Pentium-based
processor architectures, the software makes use of MMX
and MMX-2 SIMD instructions in time-critical parts

frame-number

(b) Real-size and estimation error

salesman”, “deadline”, and “stefan” have been concatenated to show
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Fig. 14. Rate-control including adaptive quantization.

like DCT, quantization, motion-estimation, and motion-
compensation.

For the scalar DCT implementation, we have adopted
the algorithm described in [1] which is a row-column
based algorithm with a minimum number of multiplica-
tions. In contrast, the MMX implementation is based
on a row-column approach with different fast DCT algo-
rithms for the row and column transforms [4]. Applying
a single fast algorithm for both row and column trans-
forms requires two matrix transpositions, which would
induce inefficient memory operations. By using two in-
dependent algorithms, each can use a matrix decomposi-
tion that is optimized for the coefficient memory access-
pattern. Consequently, a 2D-DCT can be carried out
without matrix transposition.

The encoder achieves real-time encoding of CIF-
resolution video sequences on a 500 MHz Pentium-III
system using the Three-Step-Search algorithm for mo-
tion estimation. Moreover, the encoder supports multi-
threading for increased performance on SMP systems
(see [8] for more information).



| TM5 | SAMPEG /wo s.c. | SAMPEG /w s.c.
table-tennis @768 kbps | 34.85 dB 36.70 dB 36.77 dB
@1125 kbps | 36.85 dB 38.64 dB 38.72 dB
@1500 kbps | 38.45 dB 39.85 dB 39.84 dB
stefan @768 kbps | 28.29 dB 28.96 dB 29.00 dB
@1125 kbps | 30.34 dB 31.18 dB 31.21 dB
@1500 kbps | 31.97 dB 32.98 dB 32.99 dB
claire @768 kbps | 44.24 dB 45.31 dB 45.31 dB
@1125 kbps | 44.97 dB 46.69 dB 46.69 dB
@1500 kbps | 45.68 dB 47.41 dB 4741 dB
TABLE I

OVERALL ENCODER PERFORMANCE (PSNR). ALL SEQUENCES WERE ENCODED AT CIF RESOLUTION.

VIII. RESULTS

We have evaluated the performance of our encoder by
coding several sequences at different bit-rates (Table I).
We coded all sequences both with enabled scene change
detection and without, and using the TMS5 reference en-
coder implementation. The GOP structure was fixed at
N =12, M = 3 (GOP structure may differ for enabled
s.c. detection). To prevent any performance differences
resulting from different motion-estimation algorithms,
full-search with a search-range of £16 pixels was used.

An PSNR increase of 1.0-2.0 dB compared with TM5
can be observed at all sequences. The increase is due to
our rate-control technique, which generates an almost
constant MQUANT value in each frame. This equalizes
image quality across each frame and leads to only small
overhead for quantizer change.

The results of our scene change adaptive encoding
are designed to model human perception and cannot be
measured with PSNR. However, we nevertheless observe
a small increase of PSNR which is due to adapting the
GOP structure to the scene content. Note that scene
change detection does not influence our results with the
“claire” sequence, since scene changes are absent in this
sequence and the image content is too stable to trigger
the GOP structure adjustment.

IX. CONCLUSIONS

We have described a new adaptive quantization and
rate-control algorithm for MPEG-2 encoders. Scene
change detection is used to stabilize bit-allocation and
to exploit the temporal masking effect favourably for in-
creasing the perceived video quality. Moreover, adapt-
ing the GOP pattern to the video content simplifies edit-
ing operations at scene changes in the compressed do-
main.

Our bit-rate estimation has low computational com-
plexity, yet achieves high accuracy with only about
2% deviation for I-frames and about 10% deviation
for P and B-frames. Since the rate-control operates
on picture-level basis, the image quality does not vary
across the picture. This increases overall image qual-
ity because there is no temporal flicker and no bits are

wasted for switching quantization scale in the image for
the sole purpose of rate control. Finally, adaptive quan-
tization can be easily integrated into the rate-control to
increase perceived image quality.

The total quantization control system improves the
TMS5 model of MPEG-2 with 1-2 dB in picture quality.
The employed scene change detection technique gives a
marginal increase of the average SNR but a noticeable
increase of the perceptual quality.
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