
CORRIDOR SCISSORS: A SEMI-AUTOMATIC SEGMENTATION TOOL
EMPLOYING MINIMUM-COST CIRCULAR PATHS

Dirk Farin1, Magnus Pfeffer3, Peter H. N. de With2, and Wolfgang Effelsberg3

1 Univ. of Technol. Eindhoven
2 LogicaCMG / Univ. of Technol. Eindhoven

5600 MB Eindhoven, Netherlands
d.s.farin@tue.nl

3 University Mannheim
68131 Mannheim, Germany

magnus.pfeffer@bib.uni-mannheim.de

ABSTRACT

We present a new semi-automatic segmentation tool, which
is motivated by the Intelligent Scissors algorithm [1], but
which uses a modified concept of user-interaction. This new
interface provides better capabilities for modifying previous
segmentation results. The advantage of the new approach
is that it enables to gradually increase the quality of the
segmentation. The segmentation tool is based on a short-
est circular path search within a corridor that is drawn by
the user along the object boundary. For this purpose, we
present a new algorithm for computing the shortest circular
paths. Our algorithm is so fast that it almost achieves the
speed of a regular non-circular shortest path search, while
still ensuring an optimal solution.

1. INTRODUCTION

Video object segmentation plays a central role in a variety
of applications, including object-based video coding, video
editing, or video analysis. Since a completely manual seg-
mentation is a very time-consuming task, automatic video-
object segmentation algorithms have been proposed. How-
ever, for applications that require high segmentation accu-
racy, automatic algorithms still cannot provide satisfactory
results in most cases. Hence, as a compromise between ac-
curacy and efficiency, semi-automatic segmentation algo-
rithms have been developed which use user-assistance to
coarsely define the object and an automatic refinement to
relieve the user from working at the pixel level.

A popular approach is a class of image segmentation
algorithms known as Intelligent Scissors [1], of which the
interactive variant is usually referred to as Live-Wire. The
basic idea is to provide the user with a scissors tool that au-
tomatically snaps to object boundaries, reducing the need
for pixel-accurate interaction. The Intelligent Scissors al-
gorithm considers the input image as a graph, where each
image pixel corresponds to one node in the graph. Graph
edges connect nodes that correspond to neighboring pixels.
Weights are assigned to these edges according to the in-

verse gradient strength between the two corresponding pix-
els. Strong gradients hereby induce small edge weights.
After manual placement of a seed and destination position,
a minimum cost path is computed between the two posi-
tions. Since the shortest path will run along boundaries with
strong gradients, it corresponds well with object boundaries.

With increasing distance between seed and destination
position, an annoying effect becomes apparent (Fig. 1): the
minimum-cost path often snaps to background clutter if it
contains stronger gradients than the object boundary, since
this leads to a lower path cost. Even though the cost to
reach this background clutter may be high, the lower cost
along the strong background gradient outweighs a slightly
higher cost along the desired object boundary when the path
length increases. In the Live-Wire user-interface, this ef-
fects shows as a sudden change of the complete path or
as toggling between alternative paths. Hence, to define a
complete video object with the conventional algorithm, the
boundary has to be drawn in segments, restarting the graph-
search at the beginning of each segment. Once a segment
has been fixed, a later modification of that segment is not
provided.

As a solution for the problem of background clutter at-
traction, it is proposed in [2] to limit the search area to a
rectangular area between the seed and destination position.
The width of the rectangle is controlled by the user. While
this approach may ease the segmentation in some difficult
situations, it complicates the interaction process, since an-
other degree of freedom (width of rectangle) has to be con-
trolled by the user. Moreover, it does not provide a solution

true object boundary

background clutter
shortest path

Fig. 1. The shortest path is distracted from the true object
boundary because of near high-gradient background clutter.

(a) Segmentation with low object/background contrast.

(b) Path is distracted to
strong gradient.

(c) Interruption of the
wrong path leads to the
correct segmentation.

Fig. 2. Segmentation examples. If the path is distracted to
a higher contrast edge (b), the corridor can be modified to
make this path impossible (c).

to the difficulty of modifying previously defined segments.
We adopt the concept of a limited search-area in our algo-
rithm, while not using a rectangular area constraint, but an
arbitrarily shaped corridor along the object boundary. The
new segmentation tool, which we call Corridor Scissors, al-
lows the user to mark a coarse circular corridor area around
the object. This can be done very quickly, since pixel-exact
work is not required. After the circular corridor has been de-
fined, the computer searches for a shortest circular path in-
side of the corridor. The corridor not only prevents that the
path is attracted by distant background clutter, but it also re-
duces computation time, since the search space is reduced.
If the user wants to improve the segmentation, he can do so
by simply changing the shape or width of the corridor.

The underlying algorithm of Corridor Scissors is based
on the same graph-search approach as the Intelligent Scis-
sors algorithm. However, instead of searching for ordinary
shortest paths, which can be easily computed using the Di-
jkstra algorithm [3], an algorithm for computing the shortest
circular paths has to be applied. In this paper, we present a
new algorithm for the shortest circular path problem, which
has comparable computation time to that of the Dijkstra al-
gorithm.

2. CORRIDOR SCISSORS TOOL

The corridor scissors tool uses a minimal, yet flexible user
interface to define the desired segmentation. The user only

cut here

vA
vB

vC
vD

flap open
flap open

Fig. 3. The corridor is cut apart to get a non-cyclic graph.

requires to control two tools. A corridor drawing pen, which
he uses to coarsely trace the object contour, and an eraser
to reduce the size of the corridor if background clutter de-
grades the segmentation quality. The corridor may be wide
when the object boundary is clear, whereas a narrower cor-
ridor might be advantageous in difficult areas. An example
segmentation is shown in Figure 2.

Whenever the corridor shape is modified, a shortest cir-
cular path search is applied to the corridor area. The result-
ing path is taken as the object boundary. The costs that are
assigned to the edges are composed of a weighted sum of
gradient strength fG and a Laplacian zero-crossing detector
fZ . If we denote the input image with I , they are defined as

fG = 1− ||∇I||
max ||∇I||

; fZ =

{
0 at Laplacian zero crossings,
1 otherwise,

and the combined edge cost is defined as f = fG + αfZ .
The two parts of the cost function correspond to the two
most important costs proposed in [1]. The original work
proposes a sum of six different cost components, but the
remaining four have only small weight and did not show to
have much influence on the segmentation result.

3. CIRCULAR-PATH SEARCH

Searching for shortest circular paths differs from ordinary
shortest path algorithms in that no seed and destination nodes
are known in advance. In [4], several algorithms for the cir-
cular path search are proposed. All are based on the idea
of cutting the circular graph into a lane-shaped non-cyclic
graph (Fig. 3) and then solving the shortest circular path
problem by building upon ordinary shortest path algorithms.

The Multiple Search Algorithm (MSA) uses N indepen-
dent runs of the Dijkstra algorithm, where N is the width of
the graph at the cutting position. Each run assumes fixed,
opposing seed and destination nodes at both ends of the
graph. At the end, the result that gives the minimum cost
is selected. Even though this algorithm is guaranteed to al-
ways find the optimal solution, it is computationally inten-
sive since the Dijkstra algorithm has to be executed N times
independently over the full graph (N usually has a magni-
tude of about 15).

vi1

vk1 vkm

vin

u

w

vp vq

s

s

w
u

Fig. 4. Two minimum-cost paths with at least two common
nodes share the whole subpath between the common nodes.

The Image Patching Algorithm only gives an approxi-
mate solution, but requires less computation time. Here, the
non-cyclic graph is enlarged by appending part of the graph
from each end to the opposite side. An ordinary shortest
path is then computed through the complete, patched graph.
The part of the shortest path that lies inside of the origi-
nal graph is extracted and assumed to be the optimal cir-
cular path. However, even though this heuristic works in
many cases, it is not assured that the optimal circular path
is found. Moreover, the algorithm can even lead to non-
cyclic paths. The quality of the result can be increased by
enlarging the patched areas, but the required patch size is
not known and the computation time increases.

In the following, we present a new algorithm to compute
shortest circular paths, which has a low computation time
and which guarantees to find the optimal path. Since we
exploit two special properties of the Dijkstra algorithm, we
briefly review them here.

Property 1: The Dijkstra algorithm always builds a com-
plete shortest path tree, rooted at the seed node. Hence, a
single run of the Dijkstra algorithm does not give only the
shortest path to the specified destination, but also the short-
est path to every other node.

Property 2: New nodes are inserted into the shortest path
tree in the order of increasing distance from the seed node.
Hence, if only the path to the specified destination node is
required, the computation can be aborted as soon as the des-
tination node is reached.

Additionally, we need the following theorem about shortest
paths.
Theorem: Let G = (V ;E) with V = {vi} be a graph and
let u = vi1vi2 . . . vin and w = vk1vk2 . . . vkm be two mini-
mum cost paths (see Fig. 4). Then we can state that if u and
w have two nodes vp and vq in common, all nodes on the
minimum paths between vp and vq are equal1.
Proof: Assume that the two sub-paths su, sw between vp

and vq are not equal. Then, the cost of either su or sw must
be lower than the other. Let us assume that the cost of su

is lower than the cost of sw. Consequently, w cannot have
minimum cost, because the cost can be lowered by replac-
ing the subpath sw with su. �

1In case of multiple paths with the same costs, there must exist one
minimum cost path with common nodes between vp and vq .

Corollary 1: Minimum cost paths may cross at most once.
Corollary 2: If two paths share a common seed, then both
paths will share a common subpath to their destination until
both paths split. After the split, the paths will not cross.
In other words, paths with disjoint endpoints may cross once,
while paths with one endpoint in common will never cross.

Shortest Circular-Path Algorithm

Using the above-mentioned properties allows to define
a fast algorithm for computing shortest circular paths. The
complete circular path search operates in four steps.

Step 1 Cut the circular corridor into a lane as shown in
Fig. 3. It is important that the cut lies orthogonal to the
corridor direction. Since the shortest path will only cross
the cut once, placing the cut in an acute angle along the
corridor may lead to bad results (see Fig. 5). A very good
cut placement is obtained by starting a shortest path search
at an arbitrary pixel at the outer boundary of the corridor
and searching for a path to the inner boundary with uniform
edge weights. As soon as the inner boundary is reached,
the search can be aborted. The obtained path serves as the
corridor cut.

Step 2 Perform a Dijkstra-search beginning from node vA,
which is the top-left node of the lane. This pass will com-
pute at the same time shortest paths to nodes vC and vD

(see Fig. 6a). Since the starting point is shared, both paths
will share a subpath up to a node vr. Shortest paths from
the left side of the lane to the right side cannot traverse the
area above vA vC , since this would mean that they have
to cross vA vC twice, which is not allowed because
of the previous theorem. Hence, all nodes above the path
vA vC can be ignored in the following steps.

Step 3 Perform a second Dijkstra-search from node vB to
node vD. In most practical cases, this path will join the
two shortest paths from the last step at some node vl (see
Fig. 6b). If this is the case, then we are sure that all shortest
paths between the left side and the right side have a least the
subpath vl vr. Otherwise, we use a fallback algorithm
described below.

poor placement
of corridor cut

good placement
of corridor cut

Fig. 5. Corridor cuts should be placed at narrow positions,
perpendicular to the corridor. Note that the shortest path
cannot cross the cut more than once.

Step 4 Since we already know that the subpath vl vr

is part of the shortest circular path, we only have to search
for a connection from vr back to vl to close the circle. We
also know that this connection must lie between the area of
the previously computed shortest paths. Hence, we perform
a third Dijkstra-search from vl to vr over the nodes in the
shaded area depicted Fig. 6c. Appending this path to the
path vl vr gives the shortest circular path inside of the
corridor.

If, in Step 3, the shortest path from vB to vD does not
join the path vA vC , no common subpath exists and the
MSA algorithm from [4] has to be applied as a fallback-
algorithm. However, we can restrict the search to a reduced
graph, consisting only of the nodes between vA vC and
vB vD (see Fig. 6d). During our experiments, this spe-
cial case was very rare, and it only happened with some very
small objects. In this case, the corridor size was so small
that applying the MSA algorithm did not lead to an observ-
able slowdown. Since this special case is rare, Step 3 can
be implemented more efficiently by allowing a sub-optimal
solution in these cases.

Modified Step 3 Compute a full path between vB and vD,
but stop as soon as the search reaches the path vA vC .
The connecting node is labeled vl and the search is aborted.
Under the assumption that there is a common subpath and
because of the property of the Dijkstra algorithm to process
nodes in the order of increasing distance to the seed, this is
equivalent to the Step 3 as described above. Implementation
of the MSA algorithm is not needed in this case.

The computation time of our algorithm is very low. The
path search of Step 1 is aborted after N Steps (N being the
width of the corridor). Step 2 has the complexity of an ordi-
nary Dijkstra algorithm, but over the corridor area only. The
search in the modified Step 3 can usually be aborted after a
small number of steps, and the search in Step 4 is over a
small area. Hence, the total computation time is only little
more than a single Dijkstra run. The exact number depends
on the length of the corridor and the image content, but usu-
ally, the computation time is only about 5% more than or-
dinary Dijkstra. Moreover, because of the grid-structure of
the graph, a single Dijkstra-search only takes time O(|V |).

4. CONCLUSIONS AND FUTURE WORK

We have presented Corridor Scissors as a new technique
for semi-automatic image segmentation. It provides an in-
tuitive user-interface which especially supports incremen-
tal modifications to the segmentation to improve its quality.
Furthermore, an algorithm for computing shortest circular
paths has been proposed, which is the basis for our segmen-
tation technique. The described algorithm almost reaches
the same computation efficiency as the regular shortest path
computation using the Dijkstra algorithm.

A

B

C

D

vr

v

v v

v

(a) Step 2: determining upper boundary.

A

B

MrMl
C

D

v

v v

v

(b) Step 3: determining lower boundary.

vr

A

B

C

D

v

vv

v

vl

(c) Step 4: closing the cycle.

A

B

C

D

v

v v

v

(d) Fallback mode: apply MSA on reduced graph.

Fig. 6. Illustration of Steps 2-4 of the shortest circular path
search algorithm.

Future research concentrates on enhancing the current
still image segmentation to support object tracking, thereby
making it easier to segment objects through a video sequence.
Moreover, further research on the shortest circular path al-
gorithm may lead to the elimination of the special MSA
fallback-case, with the aim to find an optimal solution at
a guaranteed low computational cost.

5. REFERENCES

[1] E. N. Mortensen and W. A. Barrett, “Interactive segmenta-
tion with intelligent scissors,” Graphical Models and Image
Processing, vol. 60, pp. 349–384, 1998.

[2] Huitao Luo and Alexandros Eleftheriadis, “Rubberband: An
improved graph search algorithm for interactive object seg-
mentation,” in Proc. IEEE International Conference on Image
Processing (ICIP), 2002, vol. 1, pp. 101–104.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest, Introduction to Algorithms, The MIT Press, 1990.

[4] Changming Sun and Stefano Pallottino, “Circular shortest
path on regular grids,” Tech. Rep., CSIRO Mathematical and
Information Sciences, May 2001.

[5] Davi Geiger, Alok Gupta, Luiz A. Costa, and John Vlontzos,
“Dynamic programming for detecting, tracking, and matching
deformable contours,” IEEE Trans. on PAMI, vol. 17, no. 3,
pp. 294–302, 1995.

