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What are we going to do?What are we going to do?

camera focal length (zoom)

camera rotation angles
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Introduction 1/2Introduction 1/2

● We consider the important special case of rotational camera motion.

● Model of rotational camera motion is employed in
● video coding standards like MPEG-4 (GMC, background sprite coding),

● video content analysis (MPEG-7 descriptor),

● Rotational camera motion is usually described with an 8-parameter model

● However: no physical meaning can be assigned to these parameters.

example: MPEG-4 sprite



Dirk Farin, TU Eindhoven

4

Introduction 2/2Introduction 2/2

● Often, camera motion is required in physically meaningful parameters:
● rotation angles,

● focal-length (camera zoom).

● Applications
● augmented reality (mixing natural video with synthetic 3-D objects),

● video content analysis,

● generation of video panoramas (requires focal-length).

● Our goal: factorize perspective motion parameters into physical parameters
● three rotation angles

● focal length
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Global Motion EstimationGlobal Motion Estimation

● Camera motion can be computed either
● between successive frames

(short-term prediction), or

● relative to a global reference

(long-term prediction).

● For camera calibration, we need motion parameters for any pair of views. 
● Chaining of transforms between successive frames leads to error accumulation.

● To prevent error accumulation, register frames to a common reference frame.
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Geometry of Image AcquisitionGeometry of Image Acquisition

● Internal camera parameter matrix K

projects 3-D points onto image plane.

● Focal length fi

● Principal point (ox,oy)

● Transformation from sprite

to input image.

● Multiplying matrices and converting to inhomogeneous formulation gives
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Multi-Sprite Motion EstimationMulti-Sprite Motion Estimation

● Perspective motion model   
does not work for large 
rotation angles.
[Farin, VCIP 2004]

● Solution is to partition 
sequence into several sprites 
and perform global motion-
estimation separately.
(Multi-Sprite motion estimation)
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Overview of our Camera Calibration AlgorithmOverview of our Camera Calibration Algorithm

● Input:
● Perspective motion parameters (as obtained, e.g., by MPEG-4 sprite encoder)

● Output:
● The equivalent motion, parameterized in physical parameters

(rotation around elementary axes, and camera focal-length).

● Calibration is carried out in two steps
● Step 1: fast camera calibration with a linear algorithm (Hartley 1997)

● Step 2: refinement of camera parameters with a non-linear optimization.

● Both algorithms have been extended to multi-sprite motion estimation.
● Main advantage: unlimited camera motion.
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Linear Camera Calibration 1/3    [Hartley, 97]Linear Camera Calibration 1/3    [Hartley, 97]

● The algorithm examines images of the absolute conic, which is defined as

● With a camera transformation Hi=KiRi for a view i,

the Image of the Absolute Conic (IAC)  ω(i)  is obtained as

● Notice that the IAC
● depends only on internal camera parameters,

● is invariant to the camera rotations.

identity matrix
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Linear Camera Calibration 2/3Linear Camera Calibration 2/3

● From ω(i)=Ki
-T Ki

-1 for a view, we obtain the IAC of view i as

● We can set two constraints:
● ω00=ω11    (square pixels)

● ω10=ω01=0   (no image skew)

● These constraints can be imposed in every view.
● Using the transformation between views Hi;r , constraints from one view

can be mapped onto another:
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Linear Camera Calibration 3/3Linear Camera Calibration 3/3

● Transform the constraints from all views into a common view i.
● Stack all constraints into an equation system.

● Solve with least-squares. 

● Since ω(i)
 =Ki

-T Ki
-1 , we get K using a Cholesky decomposition 

(factorization into triangular matrices).

● Once the internal parameters Ki are known, we obtain the rotation 
between views from



Dirk Farin, TU Eindhoven

12

Extension to Multi-Sprite Motion EstimationExtension to Multi-Sprite Motion Estimation

● Problem: we cannot transform constraints if they depend on different reference frames.
● Solution: Use linking transform to concatenate sprites. Transforms between frames are 

obtained by chaining.

● To find transformation
● from view i1 in sprite k

● to view i2 in sprite k+1,

we compute:
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Non-linear Camera Calibration 1/3Non-linear Camera Calibration 1/3

● Previous algorithm: minimize algebraic error
● Better approach: minimize reprojection error

● Define reprojection error as distance of image corners p, between
● their position on the sprite, as obtained with the perspective motion model, and

● their position as obtained with the physical camera parameters model.
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Non-linear Camera Calibration 2/3Non-linear Camera Calibration 2/3

● Apply an iterative optimization, incorporating all frames at once.

● Non-linear optimization enables to incorporate all known constraints
● R is a rotation matrix,

● Principal point is fixed, no skew, square pixels

● How to parameterize rotation (we have three rotation axes)
● Rotation matrix (9p) – hard to enforce orthonormality constraint

● Euler angles (3p) – numerical instabilities near poles

● Quaternions (4p) – num. stable and easy to enforce constraint (unit norm)
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● Optimize over camera parameters

● such that distance between the image corner positions ||y-y|| is minimal
● corner positions using physical parameters 

● corner positions using homography Hi

● Optimization using a Levenberg-Marquardt

variant, optimized for sparse Jacobian matrices.

Non-linear Camera Calibration 3/3Non-linear Camera Calibration 3/3

^
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Results: horizontal panResults: horizontal pan
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Results: Results: stephanstephan sequence sequence
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Results: Results: stefanstefan sequence   (sprites) sequence   (sprites)

frames: 1-241

frames: 256-292

frames: 242-255

frames: 293-300



Dirk Farin, TU Eindhoven

19

Results: Results: stephanstephan sequence sequence

● Captured images are placed at their virtual image plane in 3D-space.

● Interactive OpenGL visualization.
● Note: no distortions observable along intersection lines.
● If viewed from camera position, images are aligned to panoramic view.
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Results: complicated camera motionResults: complicated camera motion
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Results: complicated camera motionResults: complicated camera motion
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ConclusionsConclusions

● We presented a new algorithm to factorize
global motion parameters to physically meaningful parameters.

● Arbitrary camera motion is supported (due to multi-sprite motion. est.)

● Observations:
● Linear algorithm (step 1 only) sufficient if qualitative analysis is sufficient.

● Non-linear refinement is required if exact focal length is important.

● Future Work
● Evaluation of absolute parameter accuracy.

● Obtain physical camera parameters in an online process.


