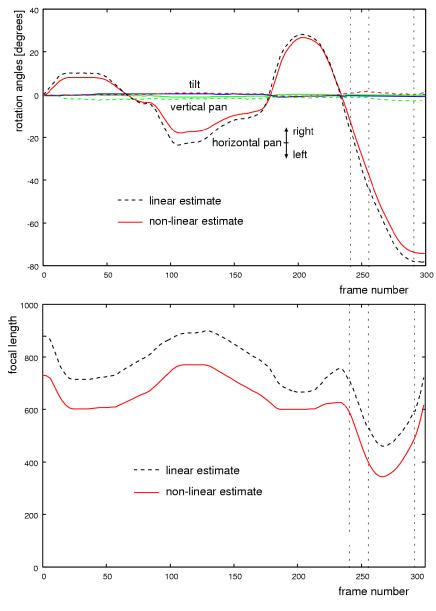
Estimating Physical Camera Parameters based on Multi-Sprite Motion Estimation

Dirk Farin Peter H. N. de With

Contact address: Dirk Farin Eindhoven University of Technology (TU/e) Design Technology Institute 5600 MB, Eindhoven, The Netherlands d.s.farin@tue.nl

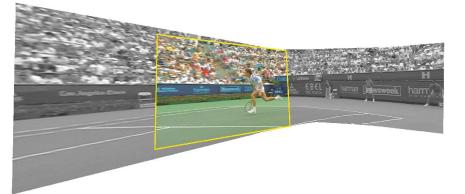
What are we going to do?



Introduction 1/2

- We consider the important special case of rotational camera motion.
- Model of rotational camera motion is employed in
 - video coding standards like MPEG-4 (GMC, background sprite coding),
 - video content analysis (MPEG-7 descriptor),
- Rotational camera motion is usually described with an 8-parameter model

$$x = \frac{h_{00}\hat{x} + h_{01}\hat{y} + h_{02}}{h_{20}\hat{x} + h_{21}\hat{y} + 1}, \quad y = \frac{h_{10}\hat{x} + h_{11}\hat{y} + h_{12}}{h_{20}\hat{x} + h_{21}\hat{y} + 1}$$



However: no physical meaning can be assigned to these parameters.

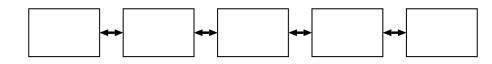
Introduction 2/2

- Often, camera motion is required in physically meaningful parameters:
 - rotation angles,
 - focal-length (camera zoom).
- Applications
 - augmented reality (mixing natural video with synthetic 3-D objects),
 - video content analysis,
 - generation of video panoramas (requires focal-length).
- <u>Our goal</u>: factorize perspective motion parameters into physical parameters
 - three rotation angles
 - focal length

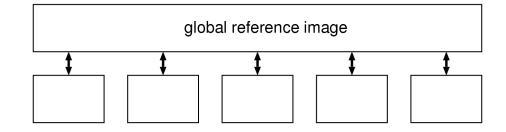
$$x = \frac{h_{00}\hat{x} + h_{01}\hat{y} + h_{02}}{h_{20}\hat{x} + h_{21}\hat{y} + 1}, \quad y = \frac{h_{10}\hat{x} + h_{11}\hat{y} + h_{12}}{h_{20}\hat{x} + h_{21}\hat{y} + 1}$$

Global Motion Estimation

- Camera motion can be computed either
 - between successive frames (short-term prediction), or



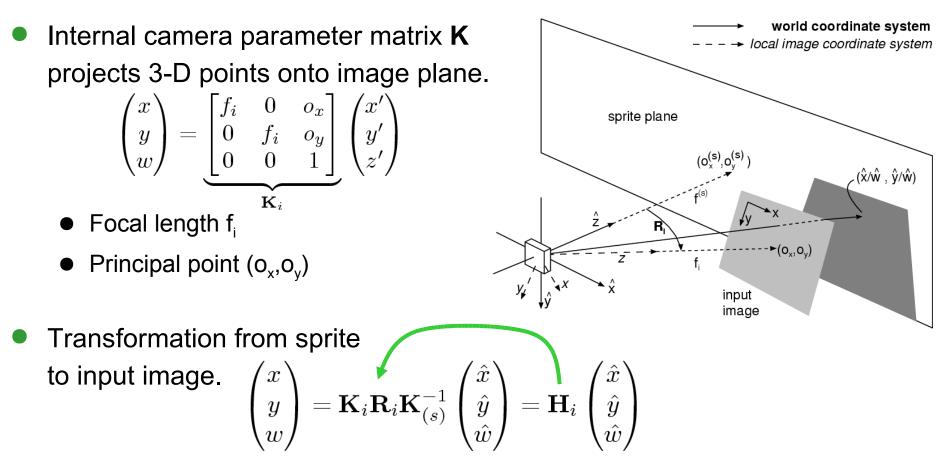
 relative to a global reference (long-term prediction).



• For camera calibration, we need motion parameters for any pair of views.

- Chaining of transforms between successive frames leads to error accumulation.
- To prevent error accumulation, register frames to a common reference frame.

Geometry of Image Acquisition



Multiplying matrices and converting to inhomogeneous formulation gives

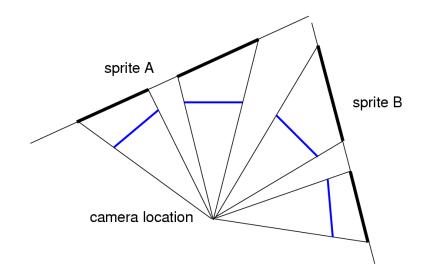
$$x = \frac{h_{00}\hat{x} + h_{01}\hat{y} + h_{02}}{h_{20}\hat{x} + h_{21}\hat{y} + 1}, \quad y = \frac{h_{10}\hat{x} + h_{11}\hat{y} + h_{12}}{h_{20}\hat{x} + h_{21}\hat{y} + 1}$$

Multi-Sprite Motion Estimation

Perspective motion model does not work for large rotation angles.
 [Farin, VCIP 2004]

 Solution is to partition sequence into several sprites and perform global motionestimation separately.

(Multi-Sprite motion estimation)



Overview of our Camera Calibration Algorithm

- Input:
 - Perspective motion parameters (as obtained, e.g., by MPEG-4 sprite encoder)
- Output:
 - The equivalent motion, parameterized in physical parameters (rotation around elementary axes, and camera focal-length).
- Calibration is carried out in two steps
 - Step 1: fast camera calibration with a linear algorithm (Hartley 1997)
 - Step 2: refinement of camera parameters with a non-linear optimization.
- Both algorithms have been extended to multi-sprite motion estimation.
 - Main advantage: unlimited camera motion.

Linear Camera Calibration 1/3 [Hartley, 97]

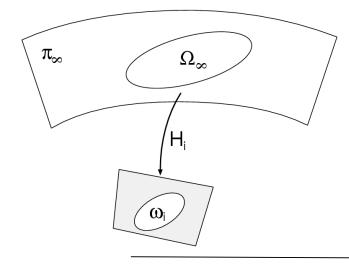
• The algorithm examines images of the **absolute conic**, which is defined as

$$(x,y,z)\mathbf{I}(x,y,z)^ op=0 \quad ext{and} \quad w=0$$

 With a camera transformation H_i=K_iR_i for a view *i*, the *Image of the Absolute Conic (IAC)* ω⁽ⁱ⁾ is obtained as

$$\omega^{(i)} = \mathbf{H_i}^{-\top} \mathbf{I} \mathbf{H_i}^{-1} = \mathbf{K_i}^{-\top} \mathbf{R_i}^{-\top} \mathbf{R_i}^{-1} \mathbf{K_i}^{-1} = \mathbf{K_i}^{-\top} \mathbf{K_i}^{-1}$$

- Notice that the IAC
 - depends only on internal camera parameters,
 - is invariant to the camera rotations.

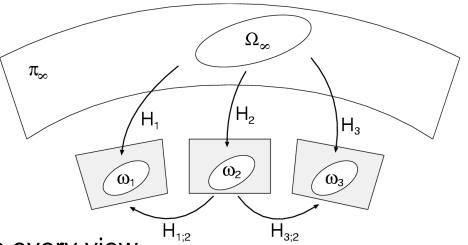


Linear Camera Calibration 2/3

• From $\omega^{(i)} = \mathbf{K}_i^{-T} \mathbf{K}_i^{-1}$ for a view, we obtain the IAC of view *i* as

$$\omega^{(i)} = \begin{bmatrix} 1/f_i^2 & 0 & -o_x/f_i^2 \\ 0 & 1/f_i^2 & -o_y/f_i^2 \\ -o_x/f_i^2 & -o_y/f_i^2 & o_x^2/f_i^2 + o_y^2/f_i^2 + 1 \end{bmatrix}$$

- We can set two constraints:
 - $\omega_{00} = \omega_{11}$ (square pixels)
 - $\omega_{10} = \omega_{01} = 0$ (no image skew)



- These constraints can be imposed in every view.
- Using the transformation between views H_{i;r}, constraints from one view can be mapped onto another:

$$\omega^{(i)} = \mathbf{H}_{i;r}^{-\top} \omega^{(r)} \mathbf{H}_{i;r}^{-1}$$

Linear Camera Calibration 3/3

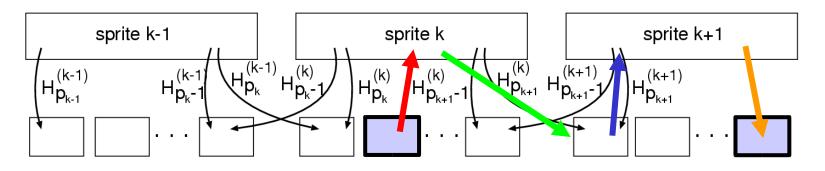
- Transform the constraints from all views into a common view *i*.
- Stack all constraints into an equation system.

$$\begin{pmatrix} \text{constraints from view 1} \\ \text{constraints from view 2} \\ \vdots \\ \text{constraints from view N} \end{pmatrix} \begin{pmatrix} \omega_{00} \\ \omega_{01} \\ \omega_{02} \\ \omega_{11} \\ \omega_{12} \\ \omega_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

- Solve with least-squares.
- Since ω⁽ⁱ⁾ = K_i^{-T} K_i⁻¹, we get K using a Cholesky decomposition (factorization into triangular matrices).
- Once the internal parameters \mathbf{K}_i are known, we obtain the rotation between views from $\mathbf{R} = \mathbf{K}_k^{-1} \mathbf{H}_k \mathbf{H}_i^{-1} \mathbf{K}_i$

Extension to Multi-Sprite Motion Estimation

- Problem: we cannot transform constraints if they depend on different reference frames.
- Solution: Use linking transform to concatenate sprites. Transforms between frames are obtained by chaining.
- sprite 2 $H_{2}^{(1)}$ H⁽²⁾ sprite 1 To find transformation from view i, in sprite k $H_{1}^{(1)}$ K^(s) image 2 κ₂(s) • to view i_2 in sprite k+1, Κ, we compute: R₁^(s) R_{2:1} $R_2^{(s)}$ $\mathbf{H}_{i_{2}}^{(k+1)}\left(\mathbf{H}_{p_{k+1}}^{(k+1)}\right)^{-1}\mathbf{H}_{p_{k+1}}^{(k)}\left(\mathbf{H}_{i_{1}}^{(k)}\right)^{-1}$ camera position



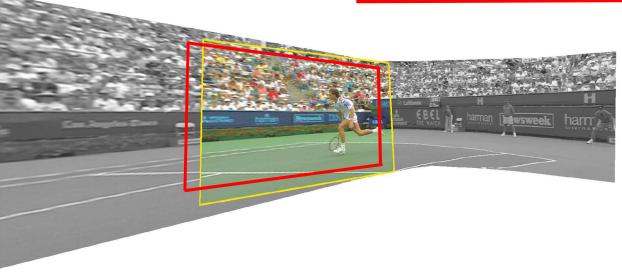
Non-linear Camera Calibration 1/3

- Previous algorithm: minimize algebraic error
- Better approach: minimize reprojection error
- Define reprojection error as distance of image corners p, between
 - their position on the sprite, as obtained with the perspective motion model, and

$$\mathbf{\hat{p}} = \mathbf{H}_i^{-1}\mathbf{p}$$

their position as obtained with the physical camera parameters model.

$$\mathbf{p}' = \mathbf{K}^{(s)} \mathbf{R}_i \mathbf{K}_i^{-1} \mathbf{p}$$



Non-linear Camera Calibration 2/3

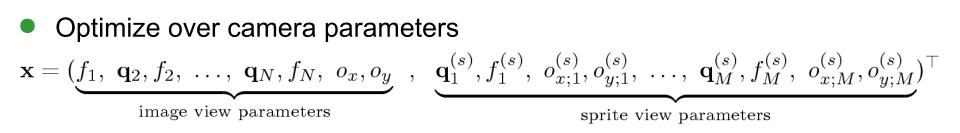
Apply an iterative optimization, incorporating all frames at once.

$$\min_{\mathbf{K}_i,\mathbf{R}_i} \sum_k d(\mathbf{\hat{p}}_k,\mathbf{p}'_k) = \sum_k d(\mathbf{H}_i^{-1}\mathbf{p}_k \ , \ \mathbf{K}^{(s)}\mathbf{R}_i\mathbf{K}_i^{-1}\mathbf{p}_k)$$

- Non-linear optimization enables to incorporate all known constraints
 - R is a rotation matrix,
 - Principal point is fixed, no skew, square pixels
- How to parameterize rotation (we have three rotation axes)
 - Rotation matrix (9p) hard to enforce orthonormality constraint
 - Euler angles (3p) numerical instabilities near poles
 - Quaternions (4p) num. stable and easy to enforce constraint (unit norm)

$$\mathbf{R} = \begin{bmatrix} 1 - 2q_y^2 - 2q_z^2 & 2q_xq_y - 2q_wq_z & 2q_xq_z + 2q_wq_y \\ 2q_xq_y + 2q_wq_z & 1 - 2q_x^2 - 2q_z^2 & 2q_yq_z - 2q_wq_x \\ 2q_xq_z - 2q_wq_y & 2q_yq_z + 2q_wq_x & 1 - 2q_x^2 - 2q_y^2 \end{bmatrix}, \text{ where } ||\mathbf{q}|| = 1$$

Non-linear Camera Calibration 3/3



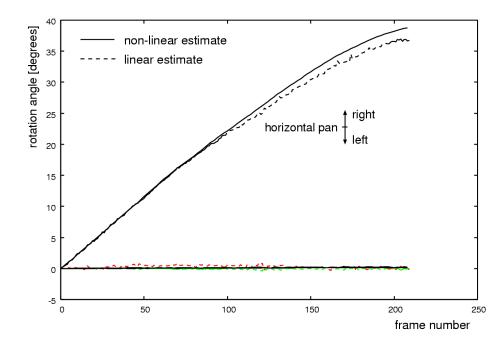
such that distance between the image corner positions ||y-y|| is minimal

corner positions using physical parameters

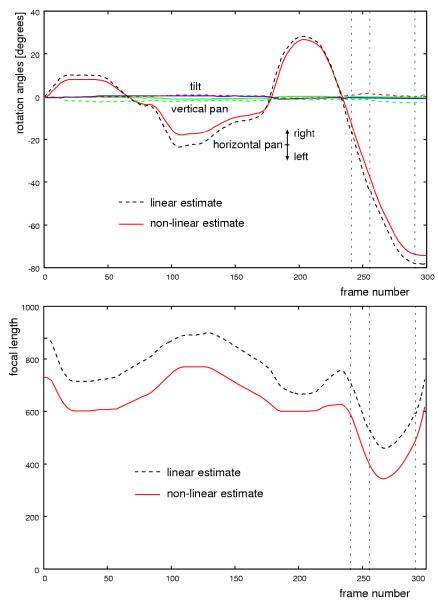
$$\mathbf{y} = (\underbrace{\mathbf{p}_{1}^{\prime(1)}, \underbrace{\mathbf{p}_{1}^{\prime(2)}, \underbrace{\mathbf{p}_{1}^{\prime(3)}, \underbrace{\mathbf{p}_{1}^{\prime}}_{1}}_{\text{first view}}, \dots, \underbrace{\mathbf{p}_{N}^{\prime(1)}, \underbrace{\mathbf{p}_{N}^{\prime(2)}, \underbrace{\mathbf{p}_{N}^{\prime(3)}, \underbrace{\mathbf{p}_{N}^{\prime(4)}}_{view N}}_{view N})^{\top}$$
• corner positions using homography $\mathbf{H}_{\mathbf{i}}$

$$\hat{\mathbf{y}} = (\underbrace{\hat{\mathbf{p}}_{1}^{(1)}, \underbrace{\hat{\mathbf{p}}_{1}^{(2)}, \underbrace{\hat{\mathbf{p}}_{1}^{(3)}, \underbrace{\mathbf{p}}_{1}^{(4)}}_{first view}, \dots, \underbrace{\hat{\mathbf{p}}_{N}^{(1)}, \underbrace{\hat{\mathbf{p}}_{N}^{(2)}, \underbrace{\mathbf{p}}_{N}^{(3)}, \underbrace{\mathbf{p}}_{N}^{(4)}}_{view N})^{\top}$$
• provide the second second

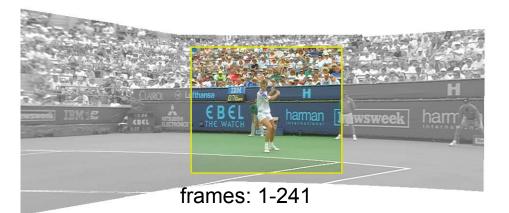
Results: horizontal pan

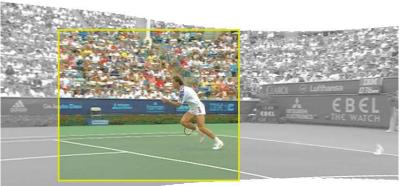


Results: stephan sequence

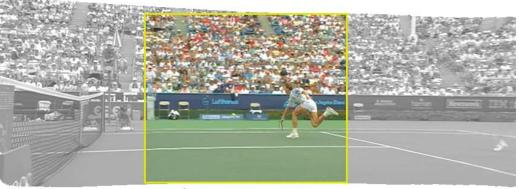


Results: stefan sequence (sprites)

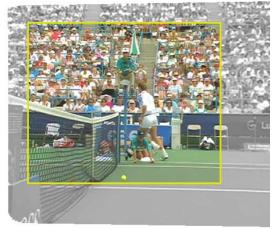




frames: 242-255



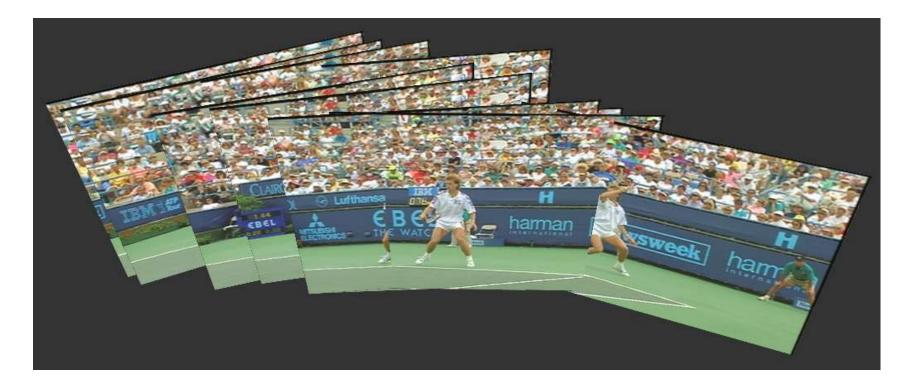
frames: 256-292



frames: 293-300

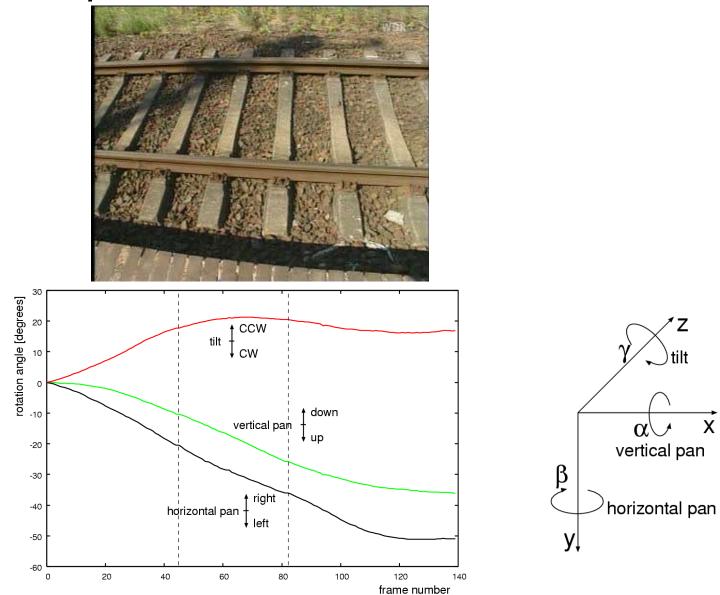
Results: stephan sequence

Captured images are placed at their virtual image plane in 3D-space.



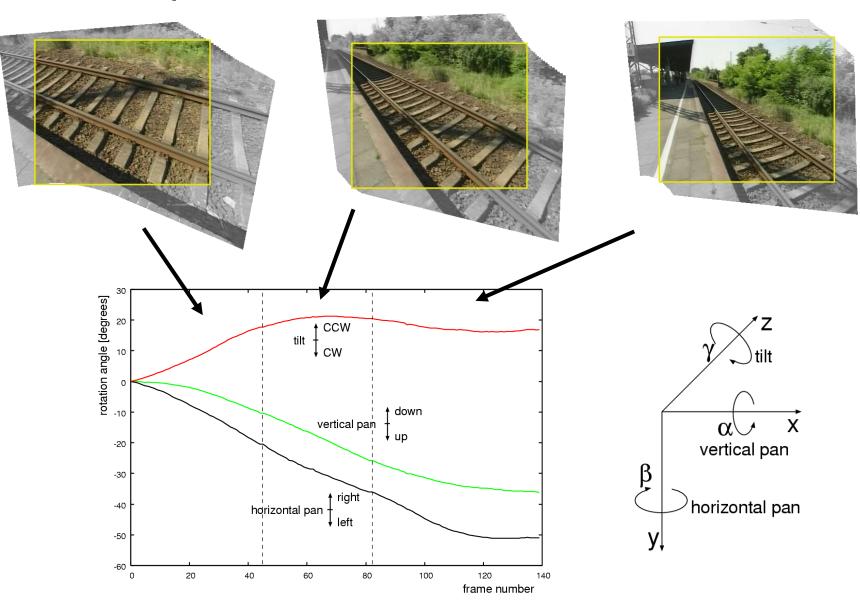
- Interactive OpenGL visualization.
- Note: no distortions observable along intersection lines.
- If viewed from camera position, images are aligned to panoramic view.

Results: complicated camera motion



Х

Results: complicated camera motion



Conclusions

- We presented a new algorithm to factorize global motion parameters to physically meaningful parameters.
- Arbitrary camera motion is supported (due to multi-sprite motion. est.)
- Observations:
 - Linear algorithm (step 1 only) sufficient if qualitative analysis is sufficient.
 - Non-linear refinement is required if exact focal length is important.
- Future Work
 - Evaluation of absolute parameter accuracy.
 - Obtain physical camera parameters in an online process.